Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324052643> ?p ?o ?g. }
- W4324052643 endingPage "189" @default.
- W4324052643 startingPage "189" @default.
- W4324052643 abstract "Road cracks are one of the external manifestations of safety hazards in transportation. At present, the detection and segmentation of road cracks is still an intensively researched issue. With the development of image segmentation technology of the convolutional neural network, the identification of road cracks has also ushered in new opportunities. However, the traditional road crack segmentation method has these three problems: 1. It is susceptible to the influence of complex background noise information. 2. Road cracks usually appear in irregular shapes, which increases the difficulty of model segmentation. 3. The cracks appear discontinuous in the segmentation results. Aiming at these problems, a network segmentation model of HC-Unet++ road crack detection is proposed in this paper. In this network model, a deep parallel feature fusion module is first proposed, one which can effectively detect various irregular shape cracks. Secondly, the SEnet attention mechanism is used to eliminate complex backgrounds to correctly extract crack information. Finally, the Blurpool pooling operation is used to replace the original maximum pooling in order to solve the crack discontinuity of the segmentation results. Through the comparison with some advanced network models, it is found that the HC-Unet++ network model is more precise for the segmentation of road cracks. The experimental results show that the method proposed in this paper has achieved 76.32% mIOU, 82.39% mPA, 85.51% mPrecision, 70.26% dice and Hd95 of 5.05 on the self-made 1040 road crack dataset. Compared with the advanced network model, the HC-Unet++ network model has stronger generalization ability and higher segmentation accuracy, which is more suitable for the segmentation detection of road cracks. Therefore, the HC-Unet++ network model proposed in this paper plays an important role in road maintenance and traffic safety." @default.
- W4324052643 created "2023-03-14" @default.
- W4324052643 creator A5001305383 @default.
- W4324052643 creator A5005648428 @default.
- W4324052643 creator A5042727018 @default.
- W4324052643 creator A5045538142 @default.
- W4324052643 creator A5072820730 @default.
- W4324052643 date "2023-03-10" @default.
- W4324052643 modified "2023-10-14" @default.
- W4324052643 title "Segmentation Detection Method for Complex Road Cracks Collected by UAV Based on HC-Unet++" @default.
- W4324052643 cites W1903029394 @default.
- W4324052643 cites W1969393996 @default.
- W4324052643 cites W2010308265 @default.
- W4324052643 cites W2033921677 @default.
- W4324052643 cites W2058988978 @default.
- W4324052643 cites W2109255472 @default.
- W4324052643 cites W2289283324 @default.
- W4324052643 cites W2412782625 @default.
- W4324052643 cites W2559943767 @default.
- W4324052643 cites W2598457882 @default.
- W4324052643 cites W2752782242 @default.
- W4324052643 cites W2796506861 @default.
- W4324052643 cites W2884585870 @default.
- W4324052643 cites W2887092226 @default.
- W4324052643 cites W2896796370 @default.
- W4324052643 cites W2899242765 @default.
- W4324052643 cites W2970332685 @default.
- W4324052643 cites W2982458471 @default.
- W4324052643 cites W3003349567 @default.
- W4324052643 cites W3013140465 @default.
- W4324052643 cites W3025800305 @default.
- W4324052643 cites W3089472239 @default.
- W4324052643 cites W3094059395 @default.
- W4324052643 cites W3122126208 @default.
- W4324052643 cites W3153045646 @default.
- W4324052643 cites W3163634295 @default.
- W4324052643 cites W3177052299 @default.
- W4324052643 cites W3198911825 @default.
- W4324052643 cites W3199024321 @default.
- W4324052643 cites W3202375294 @default.
- W4324052643 cites W3213324227 @default.
- W4324052643 cites W4205785826 @default.
- W4324052643 cites W4212882302 @default.
- W4324052643 cites W4213338244 @default.
- W4324052643 cites W4220881386 @default.
- W4324052643 cites W4293083960 @default.
- W4324052643 cites W4295832403 @default.
- W4324052643 cites W4306928120 @default.
- W4324052643 cites W4308391683 @default.
- W4324052643 cites W4313252134 @default.
- W4324052643 doi "https://doi.org/10.3390/drones7030189" @default.
- W4324052643 hasPublicationYear "2023" @default.
- W4324052643 type Work @default.
- W4324052643 citedByCount "5" @default.
- W4324052643 countsByYear W43240526432023 @default.
- W4324052643 crossrefType "journal-article" @default.
- W4324052643 hasAuthorship W4324052643A5001305383 @default.
- W4324052643 hasAuthorship W4324052643A5005648428 @default.
- W4324052643 hasAuthorship W4324052643A5042727018 @default.
- W4324052643 hasAuthorship W4324052643A5045538142 @default.
- W4324052643 hasAuthorship W4324052643A5072820730 @default.
- W4324052643 hasBestOaLocation W43240526431 @default.
- W4324052643 hasConcept C134306372 @default.
- W4324052643 hasConcept C138885662 @default.
- W4324052643 hasConcept C153180895 @default.
- W4324052643 hasConcept C154945302 @default.
- W4324052643 hasConcept C2776401178 @default.
- W4324052643 hasConcept C2777042112 @default.
- W4324052643 hasConcept C31972630 @default.
- W4324052643 hasConcept C33923547 @default.
- W4324052643 hasConcept C41008148 @default.
- W4324052643 hasConcept C41895202 @default.
- W4324052643 hasConcept C70437156 @default.
- W4324052643 hasConcept C89600930 @default.
- W4324052643 hasConceptScore W4324052643C134306372 @default.
- W4324052643 hasConceptScore W4324052643C138885662 @default.
- W4324052643 hasConceptScore W4324052643C153180895 @default.
- W4324052643 hasConceptScore W4324052643C154945302 @default.
- W4324052643 hasConceptScore W4324052643C2776401178 @default.
- W4324052643 hasConceptScore W4324052643C2777042112 @default.
- W4324052643 hasConceptScore W4324052643C31972630 @default.
- W4324052643 hasConceptScore W4324052643C33923547 @default.
- W4324052643 hasConceptScore W4324052643C41008148 @default.
- W4324052643 hasConceptScore W4324052643C41895202 @default.
- W4324052643 hasConceptScore W4324052643C70437156 @default.
- W4324052643 hasConceptScore W4324052643C89600930 @default.
- W4324052643 hasIssue "3" @default.
- W4324052643 hasLocation W43240526431 @default.
- W4324052643 hasOpenAccess W4324052643 @default.
- W4324052643 hasPrimaryLocation W43240526431 @default.
- W4324052643 hasRelatedWork W1669643531 @default.
- W4324052643 hasRelatedWork W1982826852 @default.
- W4324052643 hasRelatedWork W2005437358 @default.
- W4324052643 hasRelatedWork W2008656436 @default.
- W4324052643 hasRelatedWork W2023558673 @default.
- W4324052643 hasRelatedWork W2110230079 @default.
- W4324052643 hasRelatedWork W2134924024 @default.
- W4324052643 hasRelatedWork W2517104666 @default.