Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324056590> ?p ?o ?g. }
- W4324056590 endingPage "227" @default.
- W4324056590 startingPage "206" @default.
- W4324056590 abstract "Reinforcement learning is an area of Machine Learning. The three primary types of machine learning are supervised learning, unsupervised learning, and reinforcement learning (RL). Pre-training a model on a labeled dataset is known as supervised learning. The model is trained on unlabeled data in unsupervised learning, on the other hand. Instead of being driven by labels, RL is motivated by assessing feedback. By interacting with the environment and choosing the best course of action in each circumstance in order to maximize the reward, the agent learns the best way to solve sequential decision-making issues. The RL agent chooses how to carry out tasks on its own. Furthermore, since there are no training data, the agent learns by gaining experience. In order to make subsequent judgments, RL aids agents in efficiently interacting with their surroundings. In this essay, the state-of-the-art RL is thoroughly reviewed in the literature. Applications for reinforcement learning (RL) may be found in a wide range of industries, including smart grids, robots, computer vision, healthcare, gaming, transportation, finance, and engineering." @default.
- W4324056590 created "2023-03-14" @default.
- W4324056590 creator A5005870570 @default.
- W4324056590 creator A5010053170 @default.
- W4324056590 creator A5019304736 @default.
- W4324056590 creator A5029435204 @default.
- W4324056590 creator A5033407062 @default.
- W4324056590 creator A5047086693 @default.
- W4324056590 date "2023-02-10" @default.
- W4324056590 modified "2023-10-02" @default.
- W4324056590 title "A Review of Current Perspective and Propensity in Reinforcement Learning (RL) in an Orderly Manner" @default.
- W4324056590 cites W1542941925 @default.
- W4324056590 cites W169931978 @default.
- W4324056590 cites W1949804828 @default.
- W4324056590 cites W1966224968 @default.
- W4324056590 cites W1973039793 @default.
- W4324056590 cites W1980125776 @default.
- W4324056590 cites W2001829221 @default.
- W4324056590 cites W2041367235 @default.
- W4324056590 cites W2053504630 @default.
- W4324056590 cites W2076337359 @default.
- W4324056590 cites W2082927013 @default.
- W4324056590 cites W2099618002 @default.
- W4324056590 cites W2106808671 @default.
- W4324056590 cites W2118247617 @default.
- W4324056590 cites W2120271480 @default.
- W4324056590 cites W2120327309 @default.
- W4324056590 cites W2126357802 @default.
- W4324056590 cites W2126965126 @default.
- W4324056590 cites W2149254401 @default.
- W4324056590 cites W2151864306 @default.
- W4324056590 cites W2152911335 @default.
- W4324056590 cites W2257979135 @default.
- W4324056590 cites W2491221799 @default.
- W4324056590 cites W2563112808 @default.
- W4324056590 cites W2783173101 @default.
- W4324056590 cites W2799724826 @default.
- W4324056590 cites W2898818580 @default.
- W4324056590 cites W2907536328 @default.
- W4324056590 cites W2955026632 @default.
- W4324056590 cites W2964915587 @default.
- W4324056590 cites W2996056018 @default.
- W4324056590 cites W3047659929 @default.
- W4324056590 cites W3083252136 @default.
- W4324056590 cites W3090832565 @default.
- W4324056590 cites W3122115236 @default.
- W4324056590 cites W3201000358 @default.
- W4324056590 cites W32403112 @default.
- W4324056590 cites W4214717370 @default.
- W4324056590 cites W4224035255 @default.
- W4324056590 cites W4226299447 @default.
- W4324056590 cites W4226318860 @default.
- W4324056590 cites W4229079108 @default.
- W4324056590 cites W4229079973 @default.
- W4324056590 cites W4245746338 @default.
- W4324056590 cites W4251753831 @default.
- W4324056590 doi "https://doi.org/10.32628/cseit2390147" @default.
- W4324056590 hasPublicationYear "2023" @default.
- W4324056590 type Work @default.
- W4324056590 citedByCount "3" @default.
- W4324056590 countsByYear W43240565902023 @default.
- W4324056590 crossrefType "journal-article" @default.
- W4324056590 hasAuthorship W4324056590A5005870570 @default.
- W4324056590 hasAuthorship W4324056590A5010053170 @default.
- W4324056590 hasAuthorship W4324056590A5019304736 @default.
- W4324056590 hasAuthorship W4324056590A5029435204 @default.
- W4324056590 hasAuthorship W4324056590A5033407062 @default.
- W4324056590 hasAuthorship W4324056590A5047086693 @default.
- W4324056590 hasBestOaLocation W43240565901 @default.
- W4324056590 hasConcept C119857082 @default.
- W4324056590 hasConcept C121332964 @default.
- W4324056590 hasConcept C12713177 @default.
- W4324056590 hasConcept C136389625 @default.
- W4324056590 hasConcept C154945302 @default.
- W4324056590 hasConcept C2780791683 @default.
- W4324056590 hasConcept C41008148 @default.
- W4324056590 hasConcept C47932503 @default.
- W4324056590 hasConcept C50644808 @default.
- W4324056590 hasConcept C62520636 @default.
- W4324056590 hasConcept C8038995 @default.
- W4324056590 hasConcept C97541855 @default.
- W4324056590 hasConceptScore W4324056590C119857082 @default.
- W4324056590 hasConceptScore W4324056590C121332964 @default.
- W4324056590 hasConceptScore W4324056590C12713177 @default.
- W4324056590 hasConceptScore W4324056590C136389625 @default.
- W4324056590 hasConceptScore W4324056590C154945302 @default.
- W4324056590 hasConceptScore W4324056590C2780791683 @default.
- W4324056590 hasConceptScore W4324056590C41008148 @default.
- W4324056590 hasConceptScore W4324056590C47932503 @default.
- W4324056590 hasConceptScore W4324056590C50644808 @default.
- W4324056590 hasConceptScore W4324056590C62520636 @default.
- W4324056590 hasConceptScore W4324056590C8038995 @default.
- W4324056590 hasConceptScore W4324056590C97541855 @default.
- W4324056590 hasLocation W43240565901 @default.
- W4324056590 hasOpenAccess W4324056590 @default.
- W4324056590 hasPrimaryLocation W43240565901 @default.
- W4324056590 hasRelatedWork W3022038857 @default.
- W4324056590 hasRelatedWork W3046775127 @default.