Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324056901> ?p ?o ?g. }
- W4324056901 abstract "Traditionally, spline or kernel approaches in combination with parametric estimation are used to infer the linear coefficient (fixed effects) in a partially linear mixed-effects model for repeated measurements. Using machine learning algorithms allows us to incorporate complex interaction structures and high-dimensional variables. We employ double machine learning to cope with the nonparametric part of the partially linear mixed-effects model: the nonlinear variables are regressed out nonparametrically from both the linear variables and the response. This adjustment can be performed with any machine learning algorithm, for instance random forests, which allows to take complex interaction terms and nonsmooth structures into account. The adjusted variables satisfy a linear mixed-effects model, where the linear coefficient can be estimated with standard linear mixed-effects techniques. We prove that the estimated fixed effects coefficient converges at the parametric rate, is asymptotically Gaussian distributed, and semiparametrically efficient. Two simulation studies demonstrate that our method outperforms a penalized regression spline approach in terms of coverage. We also illustrate our proposed approach on a longitudinal dataset with HIV-infected individuals. Software code for our method is available in the R-package dmlalg." @default.
- W4324056901 created "2023-03-14" @default.
- W4324056901 creator A5017801265 @default.
- W4324056901 creator A5033240072 @default.
- W4324056901 date "2023-05-13" @default.
- W4324056901 modified "2023-10-17" @default.
- W4324056901 title "Plug‐in machine learning for partially linear mixed‐effects models with repeated measurements" @default.
- W4324056901 cites W1492075988 @default.
- W4324056901 cites W1920844341 @default.
- W4324056901 cites W1967812765 @default.
- W4324056901 cites W1972165087 @default.
- W4324056901 cites W1973239973 @default.
- W4324056901 cites W1980092349 @default.
- W4324056901 cites W1999975842 @default.
- W4324056901 cites W2000098294 @default.
- W4324056901 cites W2015544818 @default.
- W4324056901 cites W2019579897 @default.
- W4324056901 cites W2023156642 @default.
- W4324056901 cites W2048858709 @default.
- W4324056901 cites W2056230503 @default.
- W4324056901 cites W2056721614 @default.
- W4324056901 cites W206706296 @default.
- W4324056901 cites W2068354891 @default.
- W4324056901 cites W2075651107 @default.
- W4324056901 cites W2082246284 @default.
- W4324056901 cites W2116581043 @default.
- W4324056901 cites W2132174411 @default.
- W4324056901 cites W2148596757 @default.
- W4324056901 cites W2163162137 @default.
- W4324056901 cites W2194392417 @default.
- W4324056901 cites W2492409779 @default.
- W4324056901 cites W2606256627 @default.
- W4324056901 cites W2742236595 @default.
- W4324056901 cites W2774130226 @default.
- W4324056901 cites W2910603032 @default.
- W4324056901 cites W2911964244 @default.
- W4324056901 cites W2938580236 @default.
- W4324056901 cites W2961889803 @default.
- W4324056901 cites W2970340191 @default.
- W4324056901 cites W3082023809 @default.
- W4324056901 cites W3087918275 @default.
- W4324056901 cites W3103221895 @default.
- W4324056901 cites W3110592825 @default.
- W4324056901 cites W3121191917 @default.
- W4324056901 cites W3121832289 @default.
- W4324056901 cites W3123436326 @default.
- W4324056901 cites W3125188740 @default.
- W4324056901 cites W3132486221 @default.
- W4324056901 cites W3151826159 @default.
- W4324056901 cites W3201543508 @default.
- W4324056901 cites W4206439534 @default.
- W4324056901 cites W4236702380 @default.
- W4324056901 cites W4247571494 @default.
- W4324056901 cites W2116413104 @default.
- W4324056901 doi "https://doi.org/10.1111/sjos.12639" @default.
- W4324056901 hasPublicationYear "2023" @default.
- W4324056901 type Work @default.
- W4324056901 citedByCount "0" @default.
- W4324056901 crossrefType "journal-article" @default.
- W4324056901 hasAuthorship W4324056901A5017801265 @default.
- W4324056901 hasAuthorship W4324056901A5033240072 @default.
- W4324056901 hasBestOaLocation W43240569011 @default.
- W4324056901 hasConcept C102366305 @default.
- W4324056901 hasConcept C10390562 @default.
- W4324056901 hasConcept C105795698 @default.
- W4324056901 hasConcept C11413529 @default.
- W4324056901 hasConcept C117251300 @default.
- W4324056901 hasConcept C121332964 @default.
- W4324056901 hasConcept C126255220 @default.
- W4324056901 hasConcept C127413603 @default.
- W4324056901 hasConcept C153720581 @default.
- W4324056901 hasConcept C158622935 @default.
- W4324056901 hasConcept C16012445 @default.
- W4324056901 hasConcept C163175372 @default.
- W4324056901 hasConcept C163716315 @default.
- W4324056901 hasConcept C28826006 @default.
- W4324056901 hasConcept C33923547 @default.
- W4324056901 hasConcept C48921125 @default.
- W4324056901 hasConcept C62520636 @default.
- W4324056901 hasConcept C66938386 @default.
- W4324056901 hasConceptScore W4324056901C102366305 @default.
- W4324056901 hasConceptScore W4324056901C10390562 @default.
- W4324056901 hasConceptScore W4324056901C105795698 @default.
- W4324056901 hasConceptScore W4324056901C11413529 @default.
- W4324056901 hasConceptScore W4324056901C117251300 @default.
- W4324056901 hasConceptScore W4324056901C121332964 @default.
- W4324056901 hasConceptScore W4324056901C126255220 @default.
- W4324056901 hasConceptScore W4324056901C127413603 @default.
- W4324056901 hasConceptScore W4324056901C153720581 @default.
- W4324056901 hasConceptScore W4324056901C158622935 @default.
- W4324056901 hasConceptScore W4324056901C16012445 @default.
- W4324056901 hasConceptScore W4324056901C163175372 @default.
- W4324056901 hasConceptScore W4324056901C163716315 @default.
- W4324056901 hasConceptScore W4324056901C28826006 @default.
- W4324056901 hasConceptScore W4324056901C33923547 @default.
- W4324056901 hasConceptScore W4324056901C48921125 @default.
- W4324056901 hasConceptScore W4324056901C62520636 @default.
- W4324056901 hasConceptScore W4324056901C66938386 @default.
- W4324056901 hasFunder F4320338335 @default.
- W4324056901 hasLocation W43240569011 @default.