Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324065239> ?p ?o ?g. }
- W4324065239 endingPage "2635" @default.
- W4324065239 startingPage "2635" @default.
- W4324065239 abstract "The large-scale integration into electrical systems of intermittent power-generation sources, such as wind power plants, requires greater efforts and knowledge from operators to keep these systems operating efficiently. These sources require reliable output power forecasts to set up the optimal operating point of the electrical system. In previous research, the authors developed an evolutionary approach algorithm called RCDESIGN to optimize the hyperparameters and topology of Echo State Networks (ESN), and applied the model in different time series forecasting, including wind speed. In this paper, RCDESIGN was modified in some aspects of the genetic algorithm, and now it optimizes an ESN with augmented states (ESN-AS) and has been called RCDESIGN-AS. The evolutionary algorithm allows the search for the best parameters and topology of the recurrent neural network to be performed simultaneously. In addition, RCDESIGN-AS has the important characteristic of requiring little computational effort and processing time since it is not necessary for the eigenvalues of the reservoir weight matrix to be reduced and also due to the fact that the augmented states make it possible to reduce the number of neurons in the reservoir. The method was applied for wind speed forecasting with a 24-h ahead horizon using real data of wind speed from five cities in the Northeast Region of Brazil. All results obtained with the proposed method overcame forecasting performed by the persistence method, obtaining prediction gains ranging from 60% to 80% in relation to this reference method. In some datasets, the proposed method also yielded better results than the traditional ESN, showing that RCDESIGN-AS can be a powerful tool for wind-speed forecasting and possibly for other types of time series." @default.
- W4324065239 created "2023-03-14" @default.
- W4324065239 creator A5001497831 @default.
- W4324065239 creator A5008830573 @default.
- W4324065239 creator A5016539773 @default.
- W4324065239 creator A5034346571 @default.
- W4324065239 creator A5042802692 @default.
- W4324065239 creator A5069071534 @default.
- W4324065239 creator A5086170907 @default.
- W4324065239 date "2023-03-10" @default.
- W4324065239 modified "2023-09-26" @default.
- W4324065239 title "Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting" @default.
- W4324065239 cites W1825898699 @default.
- W4324065239 cites W1970396034 @default.
- W4324065239 cites W1992662982 @default.
- W4324065239 cites W1996083129 @default.
- W4324065239 cites W2024692966 @default.
- W4324065239 cites W2057670075 @default.
- W4324065239 cites W2058504886 @default.
- W4324065239 cites W2103179919 @default.
- W4324065239 cites W2105281013 @default.
- W4324065239 cites W2171865010 @default.
- W4324065239 cites W2313097328 @default.
- W4324065239 cites W2521080030 @default.
- W4324065239 cites W2766569626 @default.
- W4324065239 cites W2774931013 @default.
- W4324065239 cites W2796137172 @default.
- W4324065239 cites W2999273573 @default.
- W4324065239 cites W3160909062 @default.
- W4324065239 cites W4200287216 @default.
- W4324065239 cites W4206017373 @default.
- W4324065239 doi "https://doi.org/10.3390/en16062635" @default.
- W4324065239 hasPublicationYear "2023" @default.
- W4324065239 type Work @default.
- W4324065239 citedByCount "0" @default.
- W4324065239 crossrefType "journal-article" @default.
- W4324065239 hasAuthorship W4324065239A5001497831 @default.
- W4324065239 hasAuthorship W4324065239A5008830573 @default.
- W4324065239 hasAuthorship W4324065239A5016539773 @default.
- W4324065239 hasAuthorship W4324065239A5034346571 @default.
- W4324065239 hasAuthorship W4324065239A5042802692 @default.
- W4324065239 hasAuthorship W4324065239A5069071534 @default.
- W4324065239 hasAuthorship W4324065239A5086170907 @default.
- W4324065239 hasBestOaLocation W43240652391 @default.
- W4324065239 hasConcept C11413529 @default.
- W4324065239 hasConcept C115051666 @default.
- W4324065239 hasConcept C119599485 @default.
- W4324065239 hasConcept C119857082 @default.
- W4324065239 hasConcept C121332964 @default.
- W4324065239 hasConcept C126255220 @default.
- W4324065239 hasConcept C127413603 @default.
- W4324065239 hasConcept C147168706 @default.
- W4324065239 hasConcept C153294291 @default.
- W4324065239 hasConcept C154945302 @default.
- W4324065239 hasConcept C161067210 @default.
- W4324065239 hasConcept C163258240 @default.
- W4324065239 hasConcept C172025690 @default.
- W4324065239 hasConcept C205649164 @default.
- W4324065239 hasConcept C28761237 @default.
- W4324065239 hasConcept C33923547 @default.
- W4324065239 hasConcept C41008148 @default.
- W4324065239 hasConcept C50644808 @default.
- W4324065239 hasConcept C61797465 @default.
- W4324065239 hasConcept C62520636 @default.
- W4324065239 hasConcept C76155785 @default.
- W4324065239 hasConcept C78600449 @default.
- W4324065239 hasConcept C8642999 @default.
- W4324065239 hasConcept C8880873 @default.
- W4324065239 hasConcept C89227174 @default.
- W4324065239 hasConceptScore W4324065239C11413529 @default.
- W4324065239 hasConceptScore W4324065239C115051666 @default.
- W4324065239 hasConceptScore W4324065239C119599485 @default.
- W4324065239 hasConceptScore W4324065239C119857082 @default.
- W4324065239 hasConceptScore W4324065239C121332964 @default.
- W4324065239 hasConceptScore W4324065239C126255220 @default.
- W4324065239 hasConceptScore W4324065239C127413603 @default.
- W4324065239 hasConceptScore W4324065239C147168706 @default.
- W4324065239 hasConceptScore W4324065239C153294291 @default.
- W4324065239 hasConceptScore W4324065239C154945302 @default.
- W4324065239 hasConceptScore W4324065239C161067210 @default.
- W4324065239 hasConceptScore W4324065239C163258240 @default.
- W4324065239 hasConceptScore W4324065239C172025690 @default.
- W4324065239 hasConceptScore W4324065239C205649164 @default.
- W4324065239 hasConceptScore W4324065239C28761237 @default.
- W4324065239 hasConceptScore W4324065239C33923547 @default.
- W4324065239 hasConceptScore W4324065239C41008148 @default.
- W4324065239 hasConceptScore W4324065239C50644808 @default.
- W4324065239 hasConceptScore W4324065239C61797465 @default.
- W4324065239 hasConceptScore W4324065239C62520636 @default.
- W4324065239 hasConceptScore W4324065239C76155785 @default.
- W4324065239 hasConceptScore W4324065239C78600449 @default.
- W4324065239 hasConceptScore W4324065239C8642999 @default.
- W4324065239 hasConceptScore W4324065239C8880873 @default.
- W4324065239 hasConceptScore W4324065239C89227174 @default.
- W4324065239 hasFunder F4320324901 @default.
- W4324065239 hasIssue "6" @default.
- W4324065239 hasLocation W43240652391 @default.
- W4324065239 hasOpenAccess W4324065239 @default.