Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324067072> ?p ?o ?g. }
- W4324067072 endingPage "1322" @default.
- W4324067072 startingPage "1311" @default.
- W4324067072 abstract "Abstract. PurpleAir sensors (PASs) are low-cost tools to measure fine particulate matter (PM) concentrations and are now widely used, especially in regions with few regulatory monitors. However, the raw PAS data have significant biases, so the sensors must be calibrated to generate accurate data. The U.S. EPA recently developed a national correction equation and has integrated corrected PAS data onto its AirNow website. This integration results in much better spatial coverage for PM2.5 (particulate matter with diameters less than 2.5 µm) across the US. The goal of our study is to evaluate the EPA correction equation for three different types of aerosols: typical urban wintertime aerosol, smoke from biomass burning, and mineral dust. We identified 50 individual pollution events, each having a peak hourly PM2.5 concentration of at least 47 µg m−3 and a minimum of 3 h over 40 µg m−3 and characterized the primary aerosol type as either typical urban, smoke, or long-range transported dust. For each event, we paired a PAS sampling outside air with a nearby regulatory PM2.5 monitor to evaluate the agreement. All 50 events show statistically significant correlations (R values between 0.71–1.00) between the hourly PAS and regulatory data but with varying slopes. We then corrected the PAS data using either the correction equation from Barkjohn et al. (2021) or a new equation that is now being used by the U.S. EPA for the AirNow Fire and Smoke Map (U.S. EPA, 2022b). Both equations do a good job at correcting the data for smoke and typical pollution events but with some differences. Using the Barkjohn et al. (2021) equation, we find mean slopes of 1.00 and 0.99 for urban and smoke aerosol events, respectively, for the corrected data versus the regulatory data. For heavy smoke events, we find a small change in the slope at very high PM2.5 concentrations (> 600 µg m−3), suggesting a ∼ 20 % underestimate in the corrected PAS data at these extremely high concentrations. Using the new EPA equation, we find slopes of 0.95 and 0.88 for urban and smoke events, respectively, indicating a slight underestimate in PM2.5 using this equation, especially for smoke events. For dust events, while the PAS and regulatory data still show significant correlations, the PAS data using either correction equation underestimate the true PM2.5 by a factor of 5–6. We also examined several years of co-located regulatory and PAS data from a site near Owens Lake, California (CA), which experiences high concentrations of PM2.5 due to both smoke and locally emitted dust. For this site, we find similar results as above; the corrected PAS data are accurate in smoke but are too low by a factor of 5–6 in dust. Using these data, we also find that the ratios of PAS-measured PM10 / PM1 mass and 0.3 µm / 5 µm particle counts are significantly different for dust compared to smoke. Using this difference, we propose a modified correction equation that improves the PAS data for some dust events, but further work is needed to improve this algorithm." @default.
- W4324067072 created "2023-03-14" @default.
- W4324067072 creator A5001587693 @default.
- W4324067072 creator A5009968522 @default.
- W4324067072 creator A5023947927 @default.
- W4324067072 creator A5029501148 @default.
- W4324067072 creator A5055126842 @default.
- W4324067072 creator A5068173163 @default.
- W4324067072 creator A5078008962 @default.
- W4324067072 date "2023-03-13" @default.
- W4324067072 modified "2023-10-12" @default.
- W4324067072 title "An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events" @default.
- W4324067072 cites W1977909661 @default.
- W4324067072 cites W1990939394 @default.
- W4324067072 cites W2023444051 @default.
- W4324067072 cites W2072025345 @default.
- W4324067072 cites W2089474186 @default.
- W4324067072 cites W2121373541 @default.
- W4324067072 cites W2166974051 @default.
- W4324067072 cites W2191182504 @default.
- W4324067072 cites W2461135747 @default.
- W4324067072 cites W2610242456 @default.
- W4324067072 cites W2615382655 @default.
- W4324067072 cites W2740228061 @default.
- W4324067072 cites W2758917046 @default.
- W4324067072 cites W2793463963 @default.
- W4324067072 cites W2801004185 @default.
- W4324067072 cites W2947513075 @default.
- W4324067072 cites W2962249211 @default.
- W4324067072 cites W2989879616 @default.
- W4324067072 cites W2991186918 @default.
- W4324067072 cites W2997302005 @default.
- W4324067072 cites W3082667302 @default.
- W4324067072 cites W3108389162 @default.
- W4324067072 cites W3109504479 @default.
- W4324067072 cites W3152869656 @default.
- W4324067072 cites W3155952735 @default.
- W4324067072 cites W4225546833 @default.
- W4324067072 doi "https://doi.org/10.5194/amt-16-1311-2023" @default.
- W4324067072 hasPublicationYear "2023" @default.
- W4324067072 type Work @default.
- W4324067072 citedByCount "5" @default.
- W4324067072 countsByYear W43240670722023 @default.
- W4324067072 crossrefType "journal-article" @default.
- W4324067072 hasAuthorship W4324067072A5001587693 @default.
- W4324067072 hasAuthorship W4324067072A5009968522 @default.
- W4324067072 hasAuthorship W4324067072A5023947927 @default.
- W4324067072 hasAuthorship W4324067072A5029501148 @default.
- W4324067072 hasAuthorship W4324067072A5055126842 @default.
- W4324067072 hasAuthorship W4324067072A5068173163 @default.
- W4324067072 hasAuthorship W4324067072A5078008962 @default.
- W4324067072 hasBestOaLocation W43240670721 @default.
- W4324067072 hasConcept C121332964 @default.
- W4324067072 hasConcept C153294291 @default.
- W4324067072 hasConcept C159985019 @default.
- W4324067072 hasConcept C160529264 @default.
- W4324067072 hasConcept C178790620 @default.
- W4324067072 hasConcept C185592680 @default.
- W4324067072 hasConcept C18903297 @default.
- W4324067072 hasConcept C192562407 @default.
- W4324067072 hasConcept C204323151 @default.
- W4324067072 hasConcept C24245907 @default.
- W4324067072 hasConcept C2779345167 @default.
- W4324067072 hasConcept C3019268976 @default.
- W4324067072 hasConcept C39432304 @default.
- W4324067072 hasConcept C521259446 @default.
- W4324067072 hasConcept C559116025 @default.
- W4324067072 hasConcept C58874564 @default.
- W4324067072 hasConcept C86803240 @default.
- W4324067072 hasConcept C91586092 @default.
- W4324067072 hasConceptScore W4324067072C121332964 @default.
- W4324067072 hasConceptScore W4324067072C153294291 @default.
- W4324067072 hasConceptScore W4324067072C159985019 @default.
- W4324067072 hasConceptScore W4324067072C160529264 @default.
- W4324067072 hasConceptScore W4324067072C178790620 @default.
- W4324067072 hasConceptScore W4324067072C185592680 @default.
- W4324067072 hasConceptScore W4324067072C18903297 @default.
- W4324067072 hasConceptScore W4324067072C192562407 @default.
- W4324067072 hasConceptScore W4324067072C204323151 @default.
- W4324067072 hasConceptScore W4324067072C24245907 @default.
- W4324067072 hasConceptScore W4324067072C2779345167 @default.
- W4324067072 hasConceptScore W4324067072C3019268976 @default.
- W4324067072 hasConceptScore W4324067072C39432304 @default.
- W4324067072 hasConceptScore W4324067072C521259446 @default.
- W4324067072 hasConceptScore W4324067072C559116025 @default.
- W4324067072 hasConceptScore W4324067072C58874564 @default.
- W4324067072 hasConceptScore W4324067072C86803240 @default.
- W4324067072 hasConceptScore W4324067072C91586092 @default.
- W4324067072 hasFunder F4320306107 @default.
- W4324067072 hasFunder F4320332181 @default.
- W4324067072 hasFunder F4320334502 @default.
- W4324067072 hasIssue "5" @default.
- W4324067072 hasLocation W43240670721 @default.
- W4324067072 hasOpenAccess W4324067072 @default.
- W4324067072 hasPrimaryLocation W43240670721 @default.
- W4324067072 hasRelatedWork W2021765542 @default.
- W4324067072 hasRelatedWork W2095548094 @default.
- W4324067072 hasRelatedWork W2236315725 @default.