Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324069993> ?p ?o ?g. }
- W4324069993 endingPage "1058" @default.
- W4324069993 startingPage "1058" @default.
- W4324069993 abstract "Epilepsy is a life-threatening neurological brain disorder that gives rise to recurrent unprovoked seizures. It occurs due to abnormal chemical changes in our brains. For many years, studies have been conducted to support the automatic diagnosis of epileptic seizures for clinicians’ ease. For that, several studies entail machine learning methods for early predicting epileptic seizures. Mainly, feature extraction methods have been used to extract the right features from the EEG data generated by the EEG machine. Then various machine learning classifiers are used for the classification process. This study provides a systematic literature review of the feature selection process and classification performance. This review was limited to finding the most used feature extraction methods and the classifiers used for accurate classification of normal to epileptic seizures. The existing literature was examined from well-known repositories such as MDPI, IEEE Xplore, Wiley, Elsevier, ACM, Springer link, and others. Furthermore, a taxonomy was created that recapitulates the state-of-the-art used solutions for this problem. We also studied the nature of different benchmark and unbiased datasets and gave a rigorous analysis of the working of classifiers. Finally, we concluded the research by presenting the gaps, challenges, and opportunities that can further help researchers predict epileptic seizures." @default.
- W4324069993 created "2023-03-14" @default.
- W4324069993 creator A5052791434 @default.
- W4324069993 creator A5062871848 @default.
- W4324069993 creator A5064163862 @default.
- W4324069993 date "2023-03-10" @default.
- W4324069993 modified "2023-10-06" @default.
- W4324069993 title "Epileptic Seizure Detection Using Machine Learning: Taxonomy, Opportunities, and Challenges" @default.
- W4324069993 cites W1519673444 @default.
- W4324069993 cites W1986308133 @default.
- W4324069993 cites W1998711164 @default.
- W4324069993 cites W2005791255 @default.
- W4324069993 cites W2022856590 @default.
- W4324069993 cites W2027260213 @default.
- W4324069993 cites W2041875327 @default.
- W4324069993 cites W2065454702 @default.
- W4324069993 cites W2073182108 @default.
- W4324069993 cites W2076943531 @default.
- W4324069993 cites W2080966422 @default.
- W4324069993 cites W2128087274 @default.
- W4324069993 cites W2344928245 @default.
- W4324069993 cites W2516904419 @default.
- W4324069993 cites W2524982237 @default.
- W4324069993 cites W2536497859 @default.
- W4324069993 cites W2554037086 @default.
- W4324069993 cites W2556557830 @default.
- W4324069993 cites W2559256361 @default.
- W4324069993 cites W2591292252 @default.
- W4324069993 cites W2593745311 @default.
- W4324069993 cites W2594929769 @default.
- W4324069993 cites W2607594748 @default.
- W4324069993 cites W2726620708 @default.
- W4324069993 cites W2742472784 @default.
- W4324069993 cites W2750384459 @default.
- W4324069993 cites W2751275975 @default.
- W4324069993 cites W2781499062 @default.
- W4324069993 cites W2785207037 @default.
- W4324069993 cites W2790135017 @default.
- W4324069993 cites W2790222081 @default.
- W4324069993 cites W2790716321 @default.
- W4324069993 cites W2791012434 @default.
- W4324069993 cites W2796229782 @default.
- W4324069993 cites W2891590090 @default.
- W4324069993 cites W2898040341 @default.
- W4324069993 cites W2898875281 @default.
- W4324069993 cites W2914534442 @default.
- W4324069993 cites W2916318597 @default.
- W4324069993 cites W2923545673 @default.
- W4324069993 cites W2942361437 @default.
- W4324069993 cites W2964680775 @default.
- W4324069993 cites W2973207658 @default.
- W4324069993 cites W2985003680 @default.
- W4324069993 cites W2985407284 @default.
- W4324069993 cites W2991240676 @default.
- W4324069993 cites W2994921215 @default.
- W4324069993 cites W3003074332 @default.
- W4324069993 cites W3004158844 @default.
- W4324069993 cites W3006129733 @default.
- W4324069993 cites W3007223525 @default.
- W4324069993 cites W3010234284 @default.
- W4324069993 cites W3043250973 @default.
- W4324069993 cites W3046342815 @default.
- W4324069993 cites W3109486590 @default.
- W4324069993 cites W3119711758 @default.
- W4324069993 cites W3162684672 @default.
- W4324069993 cites W3169763361 @default.
- W4324069993 doi "https://doi.org/10.3390/diagnostics13061058" @default.
- W4324069993 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36980366" @default.
- W4324069993 hasPublicationYear "2023" @default.
- W4324069993 type Work @default.
- W4324069993 citedByCount "7" @default.
- W4324069993 countsByYear W43240699932023 @default.
- W4324069993 crossrefType "journal-article" @default.
- W4324069993 hasAuthorship W4324069993A5052791434 @default.
- W4324069993 hasAuthorship W4324069993A5062871848 @default.
- W4324069993 hasAuthorship W4324069993A5064163862 @default.
- W4324069993 hasBestOaLocation W43240699931 @default.
- W4324069993 hasConcept C111919701 @default.
- W4324069993 hasConcept C119857082 @default.
- W4324069993 hasConcept C13280743 @default.
- W4324069993 hasConcept C148483581 @default.
- W4324069993 hasConcept C154945302 @default.
- W4324069993 hasConcept C15744967 @default.
- W4324069993 hasConcept C169760540 @default.
- W4324069993 hasConcept C185798385 @default.
- W4324069993 hasConcept C205649164 @default.
- W4324069993 hasConcept C2778186239 @default.
- W4324069993 hasConcept C2779334592 @default.
- W4324069993 hasConcept C41008148 @default.
- W4324069993 hasConcept C522805319 @default.
- W4324069993 hasConcept C52622490 @default.
- W4324069993 hasConcept C98045186 @default.
- W4324069993 hasConceptScore W4324069993C111919701 @default.
- W4324069993 hasConceptScore W4324069993C119857082 @default.
- W4324069993 hasConceptScore W4324069993C13280743 @default.
- W4324069993 hasConceptScore W4324069993C148483581 @default.
- W4324069993 hasConceptScore W4324069993C154945302 @default.
- W4324069993 hasConceptScore W4324069993C15744967 @default.