Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324088786> ?p ?o ?g. }
- W4324088786 abstract "To compare the performance of three machine learning algorithms with the tumor, node, and metastasis (TNM) staging system in survival prediction and validate the individual adjuvant treatment recommendations plan based on the optimal model.In this study, we trained three machine learning madel and validated 3 machine learning survival models-deep learning neural network, random forest and cox proportional hazard model- using the data of patients with stage-al3 NSCLC patients who received resection surgery from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) database from 2012 to 2017,the performance of survival predication from all machine learning models were assessed using a concordance index (c-index) and the averaged c-index is utilized for cross-validation. The optimal model was externally validated in an independent cohort from Shaanxi Provincial People's Hospital. Then we compare the performance of the optimal model and TNM staging system. Finally, we developed a Cloud-based recommendation system for adjuvant therapy to visualize survival curve of each treatment plan and deployed on the internet.A total of 4617 patients were included in this study. The deep learning network performed more stably and accurately in predicting stage-iii NSCLC resected patients survival than the random survival forest and Cox proportional hazard model on the internal test dataset (C-index=0.834 vs. 0.678 vs. 0.640) and better than TNM staging system (C-index=0.820 vs. 0.650) in the external validation. The individual patient who follow the reference from recommendation system had superior survival compared to those who did not. The predicted 5-year-survival curve for each adjuvant treatment plan could be accessed in the recommender system via the browser.Deep learning model has several advantages over linear model and random forest model in prognostic predication and treatment recommendations. This novel analytical approach may provide accurate predication on individual survival and treatment recommendations for resected Stage-iii NSCLC patients." @default.
- W4324088786 created "2023-03-14" @default.
- W4324088786 creator A5015884736 @default.
- W4324088786 creator A5018724472 @default.
- W4324088786 creator A5024436877 @default.
- W4324088786 creator A5050729402 @default.
- W4324088786 creator A5064273061 @default.
- W4324088786 creator A5083961268 @default.
- W4324088786 date "2023-03-13" @default.
- W4324088786 modified "2023-10-16" @default.
- W4324088786 title "Development and validation of machine learning models to predict survival of patients with resected stage-III NSCLC" @default.
- W4324088786 cites W1936694622 @default.
- W4324088786 cites W2155053061 @default.
- W4324088786 cites W2312703485 @default.
- W4324088786 cites W2317448174 @default.
- W4324088786 cites W2626671005 @default.
- W4324088786 cites W2736267947 @default.
- W4324088786 cites W2753919178 @default.
- W4324088786 cites W2807992610 @default.
- W4324088786 cites W2891350120 @default.
- W4324088786 cites W2914350247 @default.
- W4324088786 cites W2964121744 @default.
- W4324088786 cites W2964299886 @default.
- W4324088786 cites W3005819420 @default.
- W4324088786 cites W3035568541 @default.
- W4324088786 cites W3128224850 @default.
- W4324088786 cites W3196850540 @default.
- W4324088786 cites W3199241644 @default.
- W4324088786 cites W3215408688 @default.
- W4324088786 cites W4200191011 @default.
- W4324088786 cites W4213447687 @default.
- W4324088786 cites W4225265385 @default.
- W4324088786 cites W4281634588 @default.
- W4324088786 cites W4281783336 @default.
- W4324088786 cites W4285079610 @default.
- W4324088786 cites W4285717267 @default.
- W4324088786 cites W4290018191 @default.
- W4324088786 cites W4292466853 @default.
- W4324088786 cites W4297152765 @default.
- W4324088786 cites W4299704639 @default.
- W4324088786 cites W4308118172 @default.
- W4324088786 cites W4309795603 @default.
- W4324088786 cites W4313426587 @default.
- W4324088786 doi "https://doi.org/10.3389/fonc.2023.1092478" @default.
- W4324088786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36994203" @default.
- W4324088786 hasPublicationYear "2023" @default.
- W4324088786 type Work @default.
- W4324088786 citedByCount "1" @default.
- W4324088786 countsByYear W43240887862023 @default.
- W4324088786 crossrefType "journal-article" @default.
- W4324088786 hasAuthorship W4324088786A5015884736 @default.
- W4324088786 hasAuthorship W4324088786A5018724472 @default.
- W4324088786 hasAuthorship W4324088786A5024436877 @default.
- W4324088786 hasAuthorship W4324088786A5050729402 @default.
- W4324088786 hasAuthorship W4324088786A5064273061 @default.
- W4324088786 hasAuthorship W4324088786A5083961268 @default.
- W4324088786 hasBestOaLocation W43240887861 @default.
- W4324088786 hasConcept C10515644 @default.
- W4324088786 hasConcept C119857082 @default.
- W4324088786 hasConcept C121608353 @default.
- W4324088786 hasConcept C126322002 @default.
- W4324088786 hasConcept C143998085 @default.
- W4324088786 hasConcept C146357865 @default.
- W4324088786 hasConcept C151730666 @default.
- W4324088786 hasConcept C154945302 @default.
- W4324088786 hasConcept C169258074 @default.
- W4324088786 hasConcept C207103383 @default.
- W4324088786 hasConcept C2776808855 @default.
- W4324088786 hasConcept C3018130915 @default.
- W4324088786 hasConcept C41008148 @default.
- W4324088786 hasConcept C44249647 @default.
- W4324088786 hasConcept C50382708 @default.
- W4324088786 hasConcept C71924100 @default.
- W4324088786 hasConcept C72563966 @default.
- W4324088786 hasConcept C86803240 @default.
- W4324088786 hasConceptScore W4324088786C10515644 @default.
- W4324088786 hasConceptScore W4324088786C119857082 @default.
- W4324088786 hasConceptScore W4324088786C121608353 @default.
- W4324088786 hasConceptScore W4324088786C126322002 @default.
- W4324088786 hasConceptScore W4324088786C143998085 @default.
- W4324088786 hasConceptScore W4324088786C146357865 @default.
- W4324088786 hasConceptScore W4324088786C151730666 @default.
- W4324088786 hasConceptScore W4324088786C154945302 @default.
- W4324088786 hasConceptScore W4324088786C169258074 @default.
- W4324088786 hasConceptScore W4324088786C207103383 @default.
- W4324088786 hasConceptScore W4324088786C2776808855 @default.
- W4324088786 hasConceptScore W4324088786C3018130915 @default.
- W4324088786 hasConceptScore W4324088786C41008148 @default.
- W4324088786 hasConceptScore W4324088786C44249647 @default.
- W4324088786 hasConceptScore W4324088786C50382708 @default.
- W4324088786 hasConceptScore W4324088786C71924100 @default.
- W4324088786 hasConceptScore W4324088786C72563966 @default.
- W4324088786 hasConceptScore W4324088786C86803240 @default.
- W4324088786 hasLocation W43240887861 @default.
- W4324088786 hasLocation W43240887862 @default.
- W4324088786 hasLocation W43240887863 @default.
- W4324088786 hasOpenAccess W4324088786 @default.
- W4324088786 hasPrimaryLocation W43240887861 @default.
- W4324088786 hasRelatedWork W2896492909 @default.
- W4324088786 hasRelatedWork W2911455822 @default.