Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324092247> ?p ?o ?g. }
- W4324092247 endingPage "1355" @default.
- W4324092247 startingPage "1355" @default.
- W4324092247 abstract "With the rapid growth of the Internet, a wealth of movie resources are readily available on the major search engines. Still, it is unlikely that users will be able to find precisely the movies they are more interested in any time soon. Traditional recommendation algorithms, such as collaborative filtering recommendation algorithms only use the user’s rating information of the movie, without using the attribute information of the user and the movie, which has the problem of inaccurate recommendations. In order to achieve personalized accurate movie recommendations, a movie recommendation algorithm based on a multi-feature attention mechanism with deep neural networks and convolutional neural networks is proposed. In order to make the predicted movie ratings more accurate, user attribute information and movie attribute information are added, user network and movie network are presented to learn user features and movie features, respectively, and a feature attention mechanism is proposed so that different parts contribute differently to movie ratings. Text features are also extracted using convolutional neural networks, in which an attention mechanism is added to make the extracted text features more accurate, and finally, personalized movie accurate recommendations are achieved. The experimental results verify the effectiveness of the algorithm. The user attribute features and movie attribute features have a good effect on the rating, the feature attention mechanism makes the features distinguish the degree of importance to the rating, and the convolutional neural network adding the attention mechanism makes the extracted text features more effective and achieves high accuracy in MSE, MAE, MAPE, R2, and RMSE indexes." @default.
- W4324092247 created "2023-03-14" @default.
- W4324092247 creator A5025032996 @default.
- W4324092247 creator A5026593167 @default.
- W4324092247 creator A5038063545 @default.
- W4324092247 creator A5083193684 @default.
- W4324092247 creator A5083979047 @default.
- W4324092247 date "2023-03-10" @default.
- W4324092247 modified "2023-09-26" @default.
- W4324092247 title "Personalized Movie Recommendations Based on a Multi-Feature Attention Mechanism with Neural Networks" @default.
- W4324092247 cites W1832693441 @default.
- W4324092247 cites W1964482960 @default.
- W4324092247 cites W1988037376 @default.
- W4324092247 cites W2039353303 @default.
- W4324092247 cites W2164998137 @default.
- W4324092247 cites W2515144511 @default.
- W4324092247 cites W2654982261 @default.
- W4324092247 cites W2738235900 @default.
- W4324092247 cites W2776897388 @default.
- W4324092247 cites W2781636776 @default.
- W4324092247 cites W2796362859 @default.
- W4324092247 cites W2807449232 @default.
- W4324092247 cites W2886672730 @default.
- W4324092247 cites W2890939490 @default.
- W4324092247 cites W2908223159 @default.
- W4324092247 cites W2910257236 @default.
- W4324092247 cites W2911964244 @default.
- W4324092247 cites W2963981376 @default.
- W4324092247 cites W2969477168 @default.
- W4324092247 cites W2990437786 @default.
- W4324092247 cites W2990531785 @default.
- W4324092247 cites W3010374345 @default.
- W4324092247 cites W3082562479 @default.
- W4324092247 cites W3098087397 @default.
- W4324092247 cites W3102476541 @default.
- W4324092247 cites W3124806927 @default.
- W4324092247 cites W3146366485 @default.
- W4324092247 cites W3183637089 @default.
- W4324092247 cites W3204525914 @default.
- W4324092247 cites W4220818090 @default.
- W4324092247 cites W4221063314 @default.
- W4324092247 cites W4226417628 @default.
- W4324092247 cites W4229372341 @default.
- W4324092247 cites W4283722896 @default.
- W4324092247 cites W4284692793 @default.
- W4324092247 cites W4292263765 @default.
- W4324092247 cites W4308273706 @default.
- W4324092247 doi "https://doi.org/10.3390/math11061355" @default.
- W4324092247 hasPublicationYear "2023" @default.
- W4324092247 type Work @default.
- W4324092247 citedByCount "1" @default.
- W4324092247 countsByYear W43240922472023 @default.
- W4324092247 crossrefType "journal-article" @default.
- W4324092247 hasAuthorship W4324092247A5025032996 @default.
- W4324092247 hasAuthorship W4324092247A5026593167 @default.
- W4324092247 hasAuthorship W4324092247A5038063545 @default.
- W4324092247 hasAuthorship W4324092247A5083193684 @default.
- W4324092247 hasAuthorship W4324092247A5083979047 @default.
- W4324092247 hasBestOaLocation W43240922471 @default.
- W4324092247 hasConcept C10138342 @default.
- W4324092247 hasConcept C110875604 @default.
- W4324092247 hasConcept C111472728 @default.
- W4324092247 hasConcept C119857082 @default.
- W4324092247 hasConcept C124101348 @default.
- W4324092247 hasConcept C136764020 @default.
- W4324092247 hasConcept C138885662 @default.
- W4324092247 hasConcept C154945302 @default.
- W4324092247 hasConcept C162324750 @default.
- W4324092247 hasConcept C182306322 @default.
- W4324092247 hasConcept C21569690 @default.
- W4324092247 hasConcept C23123220 @default.
- W4324092247 hasConcept C2776401178 @default.
- W4324092247 hasConcept C41008148 @default.
- W4324092247 hasConcept C41895202 @default.
- W4324092247 hasConcept C50644808 @default.
- W4324092247 hasConcept C557471498 @default.
- W4324092247 hasConcept C81363708 @default.
- W4324092247 hasConcept C89611455 @default.
- W4324092247 hasConceptScore W4324092247C10138342 @default.
- W4324092247 hasConceptScore W4324092247C110875604 @default.
- W4324092247 hasConceptScore W4324092247C111472728 @default.
- W4324092247 hasConceptScore W4324092247C119857082 @default.
- W4324092247 hasConceptScore W4324092247C124101348 @default.
- W4324092247 hasConceptScore W4324092247C136764020 @default.
- W4324092247 hasConceptScore W4324092247C138885662 @default.
- W4324092247 hasConceptScore W4324092247C154945302 @default.
- W4324092247 hasConceptScore W4324092247C162324750 @default.
- W4324092247 hasConceptScore W4324092247C182306322 @default.
- W4324092247 hasConceptScore W4324092247C21569690 @default.
- W4324092247 hasConceptScore W4324092247C23123220 @default.
- W4324092247 hasConceptScore W4324092247C2776401178 @default.
- W4324092247 hasConceptScore W4324092247C41008148 @default.
- W4324092247 hasConceptScore W4324092247C41895202 @default.
- W4324092247 hasConceptScore W4324092247C50644808 @default.
- W4324092247 hasConceptScore W4324092247C557471498 @default.
- W4324092247 hasConceptScore W4324092247C81363708 @default.
- W4324092247 hasConceptScore W4324092247C89611455 @default.
- W4324092247 hasIssue "6" @default.