Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324116347> ?p ?o ?g. }
- W4324116347 abstract "With the accelerated aging of the global population, the research of anti-aging technology and its application has gradually become one of the hot issues in the biomedical field. In recent years, Artificial Intelligence technologies represented by machine learning, deep learning and cognitive computing, have provided unprecedented methods and tools for biomedical research, and brought breakthroughs to anti-aging, a comprehensive and cutting-edge research topic. This paper first discusses the current problems and challenges that need to be solved in the application of AI technology in anti-aging; then summarizes the current status of AI data research on basic anti-aging applications, analyzes and discusses the research and progress of AI technology in the frontier application areas such as 3D reconstruction of aging structures, aging biomarkers and anti-aging drug development; and finally provides an outlook on the future development trends." @default.
- W4324116347 created "2023-03-15" @default.
- W4324116347 creator A5031490906 @default.
- W4324116347 creator A5033653919 @default.
- W4324116347 creator A5069912434 @default.
- W4324116347 creator A5072887801 @default.
- W4324116347 date "2023-01-06" @default.
- W4324116347 modified "2023-10-16" @default.
- W4324116347 title "AI Technology for Anti-Aging: an Overview" @default.
- W4324116347 cites W2007336727 @default.
- W4324116347 cites W2011262123 @default.
- W4324116347 cites W2042636372 @default.
- W4324116347 cites W2062533676 @default.
- W4324116347 cites W2068185541 @default.
- W4324116347 cites W2069049877 @default.
- W4324116347 cites W2081084304 @default.
- W4324116347 cites W2086991567 @default.
- W4324116347 cites W2093019364 @default.
- W4324116347 cites W2104209932 @default.
- W4324116347 cites W2107640794 @default.
- W4324116347 cites W2111084364 @default.
- W4324116347 cites W2116061337 @default.
- W4324116347 cites W2121604817 @default.
- W4324116347 cites W2123739519 @default.
- W4324116347 cites W2125018340 @default.
- W4324116347 cites W2130609411 @default.
- W4324116347 cites W2136605542 @default.
- W4324116347 cites W2171481698 @default.
- W4324116347 cites W2202954603 @default.
- W4324116347 cites W2280228605 @default.
- W4324116347 cites W2306570595 @default.
- W4324116347 cites W2397757171 @default.
- W4324116347 cites W2399140686 @default.
- W4324116347 cites W2399240576 @default.
- W4324116347 cites W2595793016 @default.
- W4324116347 cites W2623637581 @default.
- W4324116347 cites W2659343697 @default.
- W4324116347 cites W2664267452 @default.
- W4324116347 cites W2736137960 @default.
- W4324116347 cites W2739273059 @default.
- W4324116347 cites W2739878583 @default.
- W4324116347 cites W2767517408 @default.
- W4324116347 cites W2768985103 @default.
- W4324116347 cites W2783205838 @default.
- W4324116347 cites W2793826631 @default.
- W4324116347 cites W2805002767 @default.
- W4324116347 cites W2807323414 @default.
- W4324116347 cites W2809499620 @default.
- W4324116347 cites W2889664139 @default.
- W4324116347 cites W2894996849 @default.
- W4324116347 cites W2895486342 @default.
- W4324116347 cites W2896154921 @default.
- W4324116347 cites W2900135733 @default.
- W4324116347 cites W2900536852 @default.
- W4324116347 cites W2900972799 @default.
- W4324116347 cites W2954087019 @default.
- W4324116347 cites W2959728234 @default.
- W4324116347 cites W2965064764 @default.
- W4324116347 cites W2968905453 @default.
- W4324116347 cites W2969597887 @default.
- W4324116347 cites W2971751359 @default.
- W4324116347 cites W2975209795 @default.
- W4324116347 cites W2990734878 @default.
- W4324116347 cites W2991407313 @default.
- W4324116347 cites W3015295307 @default.
- W4324116347 cites W3028405346 @default.
- W4324116347 cites W3036154885 @default.
- W4324116347 cites W3037771725 @default.
- W4324116347 cites W3043245243 @default.
- W4324116347 cites W3087940289 @default.
- W4324116347 cites W3096001596 @default.
- W4324116347 cites W3097760447 @default.
- W4324116347 cites W3108663077 @default.
- W4324116347 cites W3111618002 @default.
- W4324116347 cites W3120341108 @default.
- W4324116347 cites W3123732832 @default.
- W4324116347 cites W3159078121 @default.
- W4324116347 cites W3165082198 @default.
- W4324116347 cites W3166609825 @default.
- W4324116347 cites W3173366159 @default.
- W4324116347 cites W3174489470 @default.
- W4324116347 cites W3182997864 @default.
- W4324116347 cites W4312771329 @default.
- W4324116347 doi "https://doi.org/10.1109/isbp57705.2023.10061311" @default.
- W4324116347 hasPublicationYear "2023" @default.
- W4324116347 type Work @default.
- W4324116347 citedByCount "0" @default.
- W4324116347 crossrefType "proceedings-article" @default.
- W4324116347 hasAuthorship W4324116347A5031490906 @default.
- W4324116347 hasAuthorship W4324116347A5033653919 @default.
- W4324116347 hasAuthorship W4324116347A5069912434 @default.
- W4324116347 hasAuthorship W4324116347A5072887801 @default.
- W4324116347 hasConcept C13774568 @default.
- W4324116347 hasConcept C154945302 @default.
- W4324116347 hasConcept C15744967 @default.
- W4324116347 hasConcept C169760540 @default.
- W4324116347 hasConcept C169900460 @default.
- W4324116347 hasConcept C17744445 @default.
- W4324116347 hasConcept C199539241 @default.
- W4324116347 hasConcept C202444582 @default.