Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324116476> ?p ?o ?g. }
- W4324116476 endingPage "17" @default.
- W4324116476 startingPage "1" @default.
- W4324116476 abstract "Over the last decades,deep neural networks have been penetrated into all fields of science and the real world. As a result of the lack of quantifiable data and model uncertaint, deep learning is frequently brittle,illogical, and challenging to provide trustworthy assurance for autonomous vehicles(AV) perception.This hole is filled by the suggested approach to uncertainty quantification. Nevertheless, most of the previous studies focused on the methodology and there is still a lack of research on the application of AV. To our knowledge, this paper is the first time to review the application of uncertainty in the field of AV perception and localization. In the first place, this paper analyzes the sources of uncertainty in autonomous perception,including the uncertainty brought on by sensor internal and external factors as well as the sensor distortion caused on by complex scenes. In the second place,we propose an evaluation criterion and use the criterion to carry out a quantitative analysis of perception field of application for autonomous vehicles,and we discuss the mainstream datasets. Thirdly, we put forward a number of open issues and raise some future research directions, which is of guiding significance to readers who are beginning to enter this field.We believe that epistemic uncertainty is currently the dominant research direction and that there is still a long way to go in the study of aleatoric uncertainty.And our paper will be devoted to promoting the development of uncertainty research of AV perception." @default.
- W4324116476 created "2023-03-15" @default.
- W4324116476 creator A5014680019 @default.
- W4324116476 creator A5022503716 @default.
- W4324116476 creator A5062771982 @default.
- W4324116476 creator A5074457660 @default.
- W4324116476 date "2023-01-01" @default.
- W4324116476 modified "2023-09-30" @default.
- W4324116476 title "Quantification of Uncertainty and Its Applications to Complex Domain for Autonomous Vehicles Perception System" @default.
- W4324116476 cites W1605688901 @default.
- W4324116476 cites W1893935112 @default.
- W4324116476 cites W1901616594 @default.
- W4324116476 cites W1969214006 @default.
- W4324116476 cites W2004835121 @default.
- W4324116476 cites W2007339694 @default.
- W4324116476 cites W2059875884 @default.
- W4324116476 cites W2064649305 @default.
- W4324116476 cites W2069248067 @default.
- W4324116476 cites W2072337003 @default.
- W4324116476 cites W2113243634 @default.
- W4324116476 cites W2115579991 @default.
- W4324116476 cites W2123345555 @default.
- W4324116476 cites W2145443884 @default.
- W4324116476 cites W2164850486 @default.
- W4324116476 cites W2171943915 @default.
- W4324116476 cites W2284029970 @default.
- W4324116476 cites W2340897893 @default.
- W4324116476 cites W2479868876 @default.
- W4324116476 cites W2488636769 @default.
- W4324116476 cites W2533800772 @default.
- W4324116476 cites W2588221994 @default.
- W4324116476 cites W2605592331 @default.
- W4324116476 cites W2732505563 @default.
- W4324116476 cites W2737202447 @default.
- W4324116476 cites W2742107142 @default.
- W4324116476 cites W2780740184 @default.
- W4324116476 cites W2781469068 @default.
- W4324116476 cites W2783963507 @default.
- W4324116476 cites W2784733489 @default.
- W4324116476 cites W2791639158 @default.
- W4324116476 cites W2792919579 @default.
- W4324116476 cites W2793611744 @default.
- W4324116476 cites W2794227872 @default.
- W4324116476 cites W2798820905 @default.
- W4324116476 cites W2798873012 @default.
- W4324116476 cites W2803756472 @default.
- W4324116476 cites W2884490794 @default.
- W4324116476 cites W2904979775 @default.
- W4324116476 cites W2905253977 @default.
- W4324116476 cites W2962677013 @default.
- W4324116476 cites W2963024893 @default.
- W4324116476 cites W2963167203 @default.
- W4324116476 cites W2963292632 @default.
- W4324116476 cites W2963311282 @default.
- W4324116476 cites W2963713713 @default.
- W4324116476 cites W2964248288 @default.
- W4324116476 cites W2970003526 @default.
- W4324116476 cites W2970594690 @default.
- W4324116476 cites W2971926293 @default.
- W4324116476 cites W2981958729 @default.
- W4324116476 cites W2998590856 @default.
- W4324116476 cites W3000280594 @default.
- W4324116476 cites W3010334993 @default.
- W4324116476 cites W3012478585 @default.
- W4324116476 cites W3013131042 @default.
- W4324116476 cites W3015837712 @default.
- W4324116476 cites W3027025908 @default.
- W4324116476 cites W3035564946 @default.
- W4324116476 cites W3035711539 @default.
- W4324116476 cites W3045438908 @default.
- W4324116476 cites W3045897451 @default.
- W4324116476 cites W3048054706 @default.
- W4324116476 cites W3081951175 @default.
- W4324116476 cites W3090204745 @default.
- W4324116476 cites W3092861917 @default.
- W4324116476 cites W3098691969 @default.
- W4324116476 cites W3101741415 @default.
- W4324116476 cites W3101778766 @default.
- W4324116476 cites W3102100346 @default.
- W4324116476 cites W3104616167 @default.
- W4324116476 cites W3104822953 @default.
- W4324116476 cites W3130321534 @default.
- W4324116476 cites W3132919786 @default.
- W4324116476 cites W3138360821 @default.
- W4324116476 cites W3167214600 @default.
- W4324116476 cites W3180341139 @default.
- W4324116476 cites W3184256368 @default.
- W4324116476 cites W3189343424 @default.
- W4324116476 cites W3198130126 @default.
- W4324116476 cites W3201193904 @default.
- W4324116476 cites W3202095994 @default.
- W4324116476 cites W3202811462 @default.
- W4324116476 cites W3203255241 @default.
- W4324116476 cites W3207167647 @default.
- W4324116476 cites W4212883601 @default.
- W4324116476 cites W4245232001 @default.
- W4324116476 cites W4283066310 @default.
- W4324116476 cites W4285144885 @default.