Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324130145> ?p ?o ?g. }
- W4324130145 abstract "Abstract Gastric cancer (GC), with a 5-year survival rate of less than 40%, is known as the fourth principal reason of cancer-related mortality over the world. This study aims to develop predictive models using different machine learning (ML) classifiers based on both demographic and clinical variables to predict metastasis status of patients with GC. The data applied in this study including 733 of GC patients, divided into a train and test groups at a ratio of 8:2, diagnosed at Taleghani tertiary hospital. In order to predict metastasis in GC, ML-based algorithms, including Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN), Decision Tree (RT) and Logistic Regression (LR), with 5-fold cross validation were performed. To assess the model performance, F1 score, precision, sensitivity, specificity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and precision-recall AUC (PR-AUC) were obtained. 262 (36%) experienced metastasis among 733 patients with GC. Although all models have optimal performance, the indices of SVM model seems to be more appropiate (training set: AUC: 0.94, Sensitivity: 0.94; testing set: AUC: 0.85, Sensitivity: 0.92). Then, NN has the higher AUC among ML approaches (training set: AUC: 0.98; testing set: AUC: 0.86). The RF of ML-based models, which determine size of tumor and age as two essential variables, is considered as the third efficient model, because of higher specificity and AUC (84% and 87%). Based on the demographic and clinical characteristics, ML approaches can predict the metastasis status in GC patients. According to AUC, sensitivity and specificity in both SVM and NN can be regarded as better algorithms among 6 applied ML-based methods." @default.
- W4324130145 created "2023-03-15" @default.
- W4324130145 creator A5010142556 @default.
- W4324130145 creator A5020217660 @default.
- W4324130145 creator A5021568247 @default.
- W4324130145 creator A5035798016 @default.
- W4324130145 creator A5039075392 @default.
- W4324130145 creator A5060504871 @default.
- W4324130145 creator A5071165773 @default.
- W4324130145 date "2023-03-13" @default.
- W4324130145 modified "2023-10-14" @default.
- W4324130145 title "Predicting metastasis in gastric cancer patients: machine learning-based approaches" @default.
- W4324130145 cites W2141270567 @default.
- W4324130145 cites W2802643674 @default.
- W4324130145 cites W2888855391 @default.
- W4324130145 cites W2973032093 @default.
- W4324130145 cites W2984432074 @default.
- W4324130145 cites W3018878109 @default.
- W4324130145 cites W3041732254 @default.
- W4324130145 cites W3045449358 @default.
- W4324130145 cites W3045746240 @default.
- W4324130145 cites W3088187081 @default.
- W4324130145 cites W3097304380 @default.
- W4324130145 cites W3118577024 @default.
- W4324130145 cites W3119774682 @default.
- W4324130145 cites W3126176838 @default.
- W4324130145 cites W3134830552 @default.
- W4324130145 cites W3137085506 @default.
- W4324130145 cites W3156179678 @default.
- W4324130145 cites W3158452096 @default.
- W4324130145 cites W3181482604 @default.
- W4324130145 cites W3183916124 @default.
- W4324130145 cites W3187073625 @default.
- W4324130145 cites W4205932683 @default.
- W4324130145 cites W4206335918 @default.
- W4324130145 cites W4206988975 @default.
- W4324130145 cites W4210737142 @default.
- W4324130145 cites W4210922136 @default.
- W4324130145 cites W4296860006 @default.
- W4324130145 cites W4310482340 @default.
- W4324130145 doi "https://doi.org/10.1038/s41598-023-31272-w" @default.
- W4324130145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36914697" @default.
- W4324130145 hasPublicationYear "2023" @default.
- W4324130145 type Work @default.
- W4324130145 citedByCount "0" @default.
- W4324130145 crossrefType "journal-article" @default.
- W4324130145 hasAuthorship W4324130145A5010142556 @default.
- W4324130145 hasAuthorship W4324130145A5020217660 @default.
- W4324130145 hasAuthorship W4324130145A5021568247 @default.
- W4324130145 hasAuthorship W4324130145A5035798016 @default.
- W4324130145 hasAuthorship W4324130145A5039075392 @default.
- W4324130145 hasAuthorship W4324130145A5060504871 @default.
- W4324130145 hasAuthorship W4324130145A5071165773 @default.
- W4324130145 hasBestOaLocation W43241301451 @default.
- W4324130145 hasConcept C112705442 @default.
- W4324130145 hasConcept C119857082 @default.
- W4324130145 hasConcept C121608353 @default.
- W4324130145 hasConcept C12267149 @default.
- W4324130145 hasConcept C126322002 @default.
- W4324130145 hasConcept C151956035 @default.
- W4324130145 hasConcept C154945302 @default.
- W4324130145 hasConcept C169258074 @default.
- W4324130145 hasConcept C169903167 @default.
- W4324130145 hasConcept C27181475 @default.
- W4324130145 hasConcept C2779013556 @default.
- W4324130145 hasConcept C3020225094 @default.
- W4324130145 hasConcept C41008148 @default.
- W4324130145 hasConcept C50644808 @default.
- W4324130145 hasConcept C52001869 @default.
- W4324130145 hasConcept C58471807 @default.
- W4324130145 hasConcept C71924100 @default.
- W4324130145 hasConcept C76318530 @default.
- W4324130145 hasConcept C84525736 @default.
- W4324130145 hasConceptScore W4324130145C112705442 @default.
- W4324130145 hasConceptScore W4324130145C119857082 @default.
- W4324130145 hasConceptScore W4324130145C121608353 @default.
- W4324130145 hasConceptScore W4324130145C12267149 @default.
- W4324130145 hasConceptScore W4324130145C126322002 @default.
- W4324130145 hasConceptScore W4324130145C151956035 @default.
- W4324130145 hasConceptScore W4324130145C154945302 @default.
- W4324130145 hasConceptScore W4324130145C169258074 @default.
- W4324130145 hasConceptScore W4324130145C169903167 @default.
- W4324130145 hasConceptScore W4324130145C27181475 @default.
- W4324130145 hasConceptScore W4324130145C2779013556 @default.
- W4324130145 hasConceptScore W4324130145C3020225094 @default.
- W4324130145 hasConceptScore W4324130145C41008148 @default.
- W4324130145 hasConceptScore W4324130145C50644808 @default.
- W4324130145 hasConceptScore W4324130145C52001869 @default.
- W4324130145 hasConceptScore W4324130145C58471807 @default.
- W4324130145 hasConceptScore W4324130145C71924100 @default.
- W4324130145 hasConceptScore W4324130145C76318530 @default.
- W4324130145 hasConceptScore W4324130145C84525736 @default.
- W4324130145 hasIssue "1" @default.
- W4324130145 hasLocation W43241301451 @default.
- W4324130145 hasLocation W43241301452 @default.
- W4324130145 hasLocation W43241301453 @default.
- W4324130145 hasLocation W43241301454 @default.
- W4324130145 hasLocation W43241301455 @default.
- W4324130145 hasOpenAccess W4324130145 @default.
- W4324130145 hasPrimaryLocation W43241301451 @default.