Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324130160> ?p ?o ?g. }
- W4324130160 abstract "Abstract Background Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical for its precision application. Methods We stratified 69 primary IDH-wt GBM patients into TMZ-resistant ( n = 29) and sensitive ( n = 40) groups, using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcriptomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of intra-tumoral heterogeneity on TMZ efficacy. Results In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival outcomes ( P = 1.12e−4 for progression-free survival (PFS) and 3.63e−4 for overall survival (OS)). Moreover, we found that elevated gene expression of EGR4 , PAPPA , LRRC3 , and ANXA3 was associated to intrinsic TMZ resistance. In addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration in PTEN , EGFR , and CDKN2A/B was more frequent in TMZ-sensitive samples (Fisher’s exact P = 0.0102), subsequently consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas (TCGA) into two groups with divergent survival outcomes ( P = 4.58e−4 for PFS and 3.66e−4 for OS). Furthermore, we showed a highly heterogeneous TMZ-response pattern within each GBM patient using in vitro TMZ screening and genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary IDH-wt GBMs was developed into a webserver for public usage ( http://www.wang-lab-hkust.com:3838/TMZEP ). Conclusions We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs." @default.
- W4324130160 created "2023-03-15" @default.
- W4324130160 creator A5003283147 @default.
- W4324130160 creator A5011165092 @default.
- W4324130160 creator A5012849639 @default.
- W4324130160 creator A5013460012 @default.
- W4324130160 creator A5014559891 @default.
- W4324130160 creator A5017331482 @default.
- W4324130160 creator A5022008442 @default.
- W4324130160 creator A5024064590 @default.
- W4324130160 creator A5025050406 @default.
- W4324130160 creator A5027678674 @default.
- W4324130160 creator A5030359357 @default.
- W4324130160 creator A5043822272 @default.
- W4324130160 creator A5049646227 @default.
- W4324130160 creator A5053510846 @default.
- W4324130160 creator A5057845598 @default.
- W4324130160 creator A5062641517 @default.
- W4324130160 creator A5070906604 @default.
- W4324130160 creator A5072966635 @default.
- W4324130160 creator A5077204135 @default.
- W4324130160 creator A5081216570 @default.
- W4324130160 creator A5081813546 @default.
- W4324130160 creator A5087616873 @default.
- W4324130160 creator A5091537747 @default.
- W4324130160 date "2023-03-13" @default.
- W4324130160 modified "2023-10-14" @default.
- W4324130160 title "Pharmacogenomic profiling reveals molecular features of chemotherapy resistance in IDH wild-type primary glioblastoma" @default.
- W4324130160 cites W1536396357 @default.
- W4324130160 cites W1936408161 @default.
- W4324130160 cites W1959444207 @default.
- W4324130160 cites W2022953178 @default.
- W4324130160 cites W2030017878 @default.
- W4324130160 cites W2039892426 @default.
- W4324130160 cites W2040458067 @default.
- W4324130160 cites W2041816980 @default.
- W4324130160 cites W2050812504 @default.
- W4324130160 cites W2095576182 @default.
- W4324130160 cites W2096287682 @default.
- W4324130160 cites W2096863518 @default.
- W4324130160 cites W2103441770 @default.
- W4324130160 cites W2105100844 @default.
- W4324130160 cites W2108234281 @default.
- W4324130160 cites W2121396361 @default.
- W4324130160 cites W2122590064 @default.
- W4324130160 cites W2125372543 @default.
- W4324130160 cites W2138207763 @default.
- W4324130160 cites W2140510391 @default.
- W4324130160 cites W2143497943 @default.
- W4324130160 cites W2147673571 @default.
- W4324130160 cites W2149441684 @default.
- W4324130160 cites W2154451644 @default.
- W4324130160 cites W2156257249 @default.
- W4324130160 cites W2158263774 @default.
- W4324130160 cites W2158751879 @default.
- W4324130160 cites W2169456326 @default.
- W4324130160 cites W2179438025 @default.
- W4324130160 cites W2263206910 @default.
- W4324130160 cites W2340292716 @default.
- W4324130160 cites W2344714812 @default.
- W4324130160 cites W2410468716 @default.
- W4324130160 cites W2554439427 @default.
- W4324130160 cites W2593219267 @default.
- W4324130160 cites W2884785743 @default.
- W4324130160 cites W2893221764 @default.
- W4324130160 cites W2911871569 @default.
- W4324130160 cites W2951880440 @default.
- W4324130160 cites W2978053672 @default.
- W4324130160 cites W2989869460 @default.
- W4324130160 cites W3011823531 @default.
- W4324130160 cites W3026327965 @default.
- W4324130160 cites W3047515231 @default.
- W4324130160 cites W3102476541 @default.
- W4324130160 cites W3174246647 @default.
- W4324130160 cites W3202567039 @default.
- W4324130160 cites W4282826812 @default.
- W4324130160 cites W4324130160 @default.
- W4324130160 doi "https://doi.org/10.1186/s13073-023-01165-8" @default.
- W4324130160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36915208" @default.
- W4324130160 hasPublicationYear "2023" @default.
- W4324130160 type Work @default.
- W4324130160 citedByCount "3" @default.
- W4324130160 countsByYear W43241301602023 @default.
- W4324130160 crossrefType "journal-article" @default.
- W4324130160 hasAuthorship W4324130160A5003283147 @default.
- W4324130160 hasAuthorship W4324130160A5011165092 @default.
- W4324130160 hasAuthorship W4324130160A5012849639 @default.
- W4324130160 hasAuthorship W4324130160A5013460012 @default.
- W4324130160 hasAuthorship W4324130160A5014559891 @default.
- W4324130160 hasAuthorship W4324130160A5017331482 @default.
- W4324130160 hasAuthorship W4324130160A5022008442 @default.
- W4324130160 hasAuthorship W4324130160A5024064590 @default.
- W4324130160 hasAuthorship W4324130160A5025050406 @default.
- W4324130160 hasAuthorship W4324130160A5027678674 @default.
- W4324130160 hasAuthorship W4324130160A5030359357 @default.
- W4324130160 hasAuthorship W4324130160A5043822272 @default.
- W4324130160 hasAuthorship W4324130160A5049646227 @default.
- W4324130160 hasAuthorship W4324130160A5053510846 @default.
- W4324130160 hasAuthorship W4324130160A5057845598 @default.
- W4324130160 hasAuthorship W4324130160A5062641517 @default.