Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324131271> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4324131271 endingPage "100558" @default.
- W4324131271 startingPage "100558" @default.
- W4324131271 abstract "To explore the feasibility of using deep learning method to improve the efficiency of rib fracture defect diagnosis in CT images. This study retrospective analysis of chest CT images of 2622 patients who were admitted to the outpatient and emergency departments due to chest trauma. The CT image is fed into HourglassNet for primary feature extraction, then into Inception for multi-scale feature extraction, and finally the different scale features are recombined, and then the deep convolutional neural networks (DCNN) model is imported. The model is trained by dividing fracture defects into 5 common categories, and after entering the pre-processed images, the DCNN network structure outputs the defect locations. A total of 997 rib fractures were found in 350 test set chest CT images, with 24 false-positive cases and 64 false-negative cases in the DCNN model. The accuracy of the diagnosis of rib fractures by low-senior physicians (93.2%) was lower than that of the DCNN model (95.6%) With the assistance of the DCNN model, the accuracy of the diagnosis of low-senior physicians increased (94.9%), and there was no significant difference (94.9%) between the DCNN model and the accuracy of the diagnosis of the low-senior physicians assisted by the DCNN model (95.5%). The recall rate (83.8%) for low-senior physicians to diagnose rib fractures was lower than that in the DCNN model (91.1%), and the recall rate for physician diagnosis was significantly higher (93.8%) with the assistance of the DCNN model. The average diagnostic time for low-senior physicians was (156.0 ± 31.6)s, while the diagnosis of rib fractures in the DCNN model was only (4.9 ± 1.5) s, and the diagnostic time for physicians with the assistance of the DCNN model could be shortened to (41.3 ± 7.2) s. After the CT image is extracted by HourglassNet and Inception features, it is fed into the DCNN model. The DCNN model can accurately locate and diagnose rib fractures on chest CT images, significantly shortening the diagnostic time and reducing the rate of missed diagnosis and misdiagnosis. Deep learning makes it feasible to improve the efficiency of diagnosing rib fracture defects in chest CT images." @default.
- W4324131271 created "2023-03-15" @default.
- W4324131271 creator A5033020983 @default.
- W4324131271 creator A5038776251 @default.
- W4324131271 creator A5051952340 @default.
- W4324131271 creator A5088661884 @default.
- W4324131271 date "2023-06-01" @default.
- W4324131271 modified "2023-10-14" @default.
- W4324131271 title "Deep learning-based computed tomography applied to the diagnosis of rib fractures" @default.
- W4324131271 cites W2100495367 @default.
- W4324131271 cites W2146911148 @default.
- W4324131271 cites W2576404523 @default.
- W4324131271 cites W2731899572 @default.
- W4324131271 cites W2776581140 @default.
- W4324131271 cites W2793251588 @default.
- W4324131271 cites W2800043213 @default.
- W4324131271 cites W2915041319 @default.
- W4324131271 cites W2934730619 @default.
- W4324131271 cites W2940354300 @default.
- W4324131271 cites W2972430989 @default.
- W4324131271 cites W2980999274 @default.
- W4324131271 cites W2982684882 @default.
- W4324131271 cites W2982692821 @default.
- W4324131271 cites W2986936637 @default.
- W4324131271 cites W2990286494 @default.
- W4324131271 cites W3032512901 @default.
- W4324131271 doi "https://doi.org/10.1016/j.jrras.2023.100558" @default.
- W4324131271 hasPublicationYear "2023" @default.
- W4324131271 type Work @default.
- W4324131271 citedByCount "0" @default.
- W4324131271 crossrefType "journal-article" @default.
- W4324131271 hasAuthorship W4324131271A5033020983 @default.
- W4324131271 hasAuthorship W4324131271A5038776251 @default.
- W4324131271 hasAuthorship W4324131271A5051952340 @default.
- W4324131271 hasAuthorship W4324131271A5088661884 @default.
- W4324131271 hasBestOaLocation W43241312711 @default.
- W4324131271 hasConcept C118552586 @default.
- W4324131271 hasConcept C126838900 @default.
- W4324131271 hasConcept C138885662 @default.
- W4324131271 hasConcept C154945302 @default.
- W4324131271 hasConcept C2776401178 @default.
- W4324131271 hasConcept C2780724011 @default.
- W4324131271 hasConcept C2987098735 @default.
- W4324131271 hasConcept C36454342 @default.
- W4324131271 hasConcept C41008148 @default.
- W4324131271 hasConcept C41895202 @default.
- W4324131271 hasConcept C544519230 @default.
- W4324131271 hasConcept C71924100 @default.
- W4324131271 hasConcept C81363708 @default.
- W4324131271 hasConceptScore W4324131271C118552586 @default.
- W4324131271 hasConceptScore W4324131271C126838900 @default.
- W4324131271 hasConceptScore W4324131271C138885662 @default.
- W4324131271 hasConceptScore W4324131271C154945302 @default.
- W4324131271 hasConceptScore W4324131271C2776401178 @default.
- W4324131271 hasConceptScore W4324131271C2780724011 @default.
- W4324131271 hasConceptScore W4324131271C2987098735 @default.
- W4324131271 hasConceptScore W4324131271C36454342 @default.
- W4324131271 hasConceptScore W4324131271C41008148 @default.
- W4324131271 hasConceptScore W4324131271C41895202 @default.
- W4324131271 hasConceptScore W4324131271C544519230 @default.
- W4324131271 hasConceptScore W4324131271C71924100 @default.
- W4324131271 hasConceptScore W4324131271C81363708 @default.
- W4324131271 hasIssue "2" @default.
- W4324131271 hasLocation W43241312711 @default.
- W4324131271 hasOpenAccess W4324131271 @default.
- W4324131271 hasPrimaryLocation W43241312711 @default.
- W4324131271 hasRelatedWork W1568701304 @default.
- W4324131271 hasRelatedWork W2026095104 @default.
- W4324131271 hasRelatedWork W2411545073 @default.
- W4324131271 hasRelatedWork W2510700473 @default.
- W4324131271 hasRelatedWork W4230773746 @default.
- W4324131271 hasRelatedWork W4238308949 @default.
- W4324131271 hasRelatedWork W4250549352 @default.
- W4324131271 hasRelatedWork W4312417841 @default.
- W4324131271 hasRelatedWork W4322722608 @default.
- W4324131271 hasRelatedWork W4386041617 @default.
- W4324131271 hasVolume "16" @default.
- W4324131271 isParatext "false" @default.
- W4324131271 isRetracted "false" @default.
- W4324131271 workType "article" @default.