Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324133634> ?p ?o ?g. }
- W4324133634 abstract "Recent studies have increasingly applied machine learning (ML) to aid in performance and material design associated with membrane separation. However, whether the knowledge attained by ML with a limited number of available data is enough to capture and validate the fundamental principles of membrane science remains elusive. Herein, we applied explainable artificial intelligence (XAI) to thoroughly investigate the knowledge learned by ML on the mechanisms of ion transport across polyamide reverse osmosis (RO) and nanofiltration (NF) membranes by leveraging 1,585 data from 26 membrane types. The Shapley additive explanation method based on cooperative game theory was used to unveil the influences of various ion and membrane properties on the model predictions. XAI shows that the ML can capture the important roles of size exclusion and electrostatic interaction in regulating membrane separation properly. XAI also identifies that the mechanisms governing ion transport possess different relative importance to cation and anion rejections during RO and NF filtration. Overall, we provide a framework to evaluate the knowledge underlying the ML model prediction and demonstrate that ML is able to learn fundamental mechanisms of ion transport across polyamide membranes, highlighting the importance of elucidating model interpretability for more reliable and explainable ML applications to membrane selection and design." @default.
- W4324133634 created "2023-03-15" @default.
- W4324133634 creator A5010888961 @default.
- W4324133634 creator A5026709102 @default.
- W4324133634 creator A5032391497 @default.
- W4324133634 creator A5035588847 @default.
- W4324133634 creator A5053187970 @default.
- W4324133634 creator A5062563012 @default.
- W4324133634 date "2023-03-14" @default.
- W4324133634 modified "2023-09-26" @default.
- W4324133634 title "Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence" @default.
- W4324133634 cites W1607408214 @default.
- W4324133634 cites W1929018038 @default.
- W4324133634 cites W1972103123 @default.
- W4324133634 cites W1972210874 @default.
- W4324133634 cites W1974198409 @default.
- W4324133634 cites W1974621029 @default.
- W4324133634 cites W1979935995 @default.
- W4324133634 cites W1980449311 @default.
- W4324133634 cites W1984564861 @default.
- W4324133634 cites W1991458850 @default.
- W4324133634 cites W1993650703 @default.
- W4324133634 cites W2017271596 @default.
- W4324133634 cites W2029954023 @default.
- W4324133634 cites W2036042608 @default.
- W4324133634 cites W2050129395 @default.
- W4324133634 cites W2055638681 @default.
- W4324133634 cites W2058111864 @default.
- W4324133634 cites W2072274571 @default.
- W4324133634 cites W2081334691 @default.
- W4324133634 cites W2117885477 @default.
- W4324133634 cites W2153070242 @default.
- W4324133634 cites W2156117607 @default.
- W4324133634 cites W2166361044 @default.
- W4324133634 cites W2183582153 @default.
- W4324133634 cites W2282821441 @default.
- W4324133634 cites W2296406830 @default.
- W4324133634 cites W2324824843 @default.
- W4324133634 cites W2332136976 @default.
- W4324133634 cites W2337663708 @default.
- W4324133634 cites W2340875515 @default.
- W4324133634 cites W2397074340 @default.
- W4324133634 cites W2461785295 @default.
- W4324133634 cites W2497792984 @default.
- W4324133634 cites W2514846801 @default.
- W4324133634 cites W2526773060 @default.
- W4324133634 cites W2537424594 @default.
- W4324133634 cites W2766090741 @default.
- W4324133634 cites W2767538238 @default.
- W4324133634 cites W2769978556 @default.
- W4324133634 cites W2791600493 @default.
- W4324133634 cites W2800887440 @default.
- W4324133634 cites W2899636278 @default.
- W4324133634 cites W2907773908 @default.
- W4324133634 cites W2911869805 @default.
- W4324133634 cites W2941816529 @default.
- W4324133634 cites W2966079929 @default.
- W4324133634 cites W2969759954 @default.
- W4324133634 cites W2999615587 @default.
- W4324133634 cites W3034715324 @default.
- W4324133634 cites W3046761449 @default.
- W4324133634 cites W3047425455 @default.
- W4324133634 cites W3084533494 @default.
- W4324133634 cites W3092526887 @default.
- W4324133634 cites W3098674050 @default.
- W4324133634 cites W3100249628 @default.
- W4324133634 cites W3101981467 @default.
- W4324133634 cites W3107724358 @default.
- W4324133634 cites W3114025680 @default.
- W4324133634 cites W3119829667 @default.
- W4324133634 cites W3188971811 @default.
- W4324133634 cites W3193638860 @default.
- W4324133634 cites W3194272255 @default.
- W4324133634 cites W3202475250 @default.
- W4324133634 cites W3205440317 @default.
- W4324133634 cites W3212397177 @default.
- W4324133634 cites W4200027750 @default.
- W4324133634 cites W4205684881 @default.
- W4324133634 cites W4205711362 @default.
- W4324133634 cites W4205774541 @default.
- W4324133634 cites W4206279976 @default.
- W4324133634 cites W4207080448 @default.
- W4324133634 cites W4211015179 @default.
- W4324133634 cites W4234910708 @default.
- W4324133634 cites W4285987580 @default.
- W4324133634 doi "https://doi.org/10.1021/acs.est.2c08384" @default.
- W4324133634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36917705" @default.
- W4324133634 hasPublicationYear "2023" @default.
- W4324133634 type Work @default.
- W4324133634 citedByCount "1" @default.
- W4324133634 countsByYear W43241336342023 @default.
- W4324133634 crossrefType "journal-article" @default.
- W4324133634 hasAuthorship W4324133634A5010888961 @default.
- W4324133634 hasAuthorship W4324133634A5026709102 @default.
- W4324133634 hasAuthorship W4324133634A5032391497 @default.
- W4324133634 hasAuthorship W4324133634A5035588847 @default.
- W4324133634 hasAuthorship W4324133634A5053187970 @default.
- W4324133634 hasAuthorship W4324133634A5062563012 @default.
- W4324133634 hasConcept C119857082 @default.
- W4324133634 hasConcept C127413603 @default.