Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324137519> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4324137519 abstract "Current years have exhibited the prosperity of several types of medical data, for the first time presenting the likelihood to expose the interior mechanism of illness through excavating the huge amount of monitored data for one such individual. Over the past decades, machine learning (ML) approaches were broadly implied for detecting distinct diseases. This enables an initial diagnosis and raises the probability of survival. Many medical data sets are unstable. Because of this, ML classification methods provide biased classification with the majority class. This manuscript derives a Gravitational Search Algorithm with Artificial Intelligence Driven Medical Data Classification (GSAAI-MDC) model. The presented technique majorly intends to accomplish reliable and accurate data classification processes in the medical sector. In order to attain this, the GSAAI-MDC technique applied Deep Support Vector Machine (DSVM) method for the classification of medical data. In addition, the GSA is utilized to enhance the performance of the DSVM method. The simulation analysis of the GSAAI-MDC technique is carried out using benchmark dataset and the results highlighted the superior outcomes of the GSAAI-MDC model over recent approaches." @default.
- W4324137519 created "2023-03-15" @default.
- W4324137519 creator A5015072777 @default.
- W4324137519 creator A5028784895 @default.
- W4324137519 creator A5031310796 @default.
- W4324137519 creator A5072128543 @default.
- W4324137519 creator A5079648053 @default.
- W4324137519 creator A5087372064 @default.
- W4324137519 date "2023-01-23" @default.
- W4324137519 modified "2023-09-26" @default.
- W4324137519 title "Medical Data Classification using a Gravitational Search Algorithm and Artificial Intelligence" @default.
- W4324137519 cites W2793384337 @default.
- W4324137519 cites W2795475639 @default.
- W4324137519 cites W2887685819 @default.
- W4324137519 cites W2888936415 @default.
- W4324137519 cites W2965743638 @default.
- W4324137519 cites W3007444020 @default.
- W4324137519 cites W3038010422 @default.
- W4324137519 cites W3131832570 @default.
- W4324137519 cites W3194296141 @default.
- W4324137519 cites W3204118703 @default.
- W4324137519 cites W3204372125 @default.
- W4324137519 cites W3216778633 @default.
- W4324137519 cites W4210463075 @default.
- W4324137519 cites W4210491978 @default.
- W4324137519 cites W4250136582 @default.
- W4324137519 cites W4283520405 @default.
- W4324137519 cites W4292237905 @default.
- W4324137519 doi "https://doi.org/10.1109/icssit55814.2023.10060866" @default.
- W4324137519 hasPublicationYear "2023" @default.
- W4324137519 type Work @default.
- W4324137519 citedByCount "0" @default.
- W4324137519 crossrefType "proceedings-article" @default.
- W4324137519 hasAuthorship W4324137519A5015072777 @default.
- W4324137519 hasAuthorship W4324137519A5028784895 @default.
- W4324137519 hasAuthorship W4324137519A5031310796 @default.
- W4324137519 hasAuthorship W4324137519A5072128543 @default.
- W4324137519 hasAuthorship W4324137519A5079648053 @default.
- W4324137519 hasAuthorship W4324137519A5087372064 @default.
- W4324137519 hasConcept C110083411 @default.
- W4324137519 hasConcept C11413529 @default.
- W4324137519 hasConcept C119857082 @default.
- W4324137519 hasConcept C12267149 @default.
- W4324137519 hasConcept C124101348 @default.
- W4324137519 hasConcept C13280743 @default.
- W4324137519 hasConcept C154945302 @default.
- W4324137519 hasConcept C185798385 @default.
- W4324137519 hasConcept C205649164 @default.
- W4324137519 hasConcept C2780724565 @default.
- W4324137519 hasConcept C34872919 @default.
- W4324137519 hasConcept C41008148 @default.
- W4324137519 hasConceptScore W4324137519C110083411 @default.
- W4324137519 hasConceptScore W4324137519C11413529 @default.
- W4324137519 hasConceptScore W4324137519C119857082 @default.
- W4324137519 hasConceptScore W4324137519C12267149 @default.
- W4324137519 hasConceptScore W4324137519C124101348 @default.
- W4324137519 hasConceptScore W4324137519C13280743 @default.
- W4324137519 hasConceptScore W4324137519C154945302 @default.
- W4324137519 hasConceptScore W4324137519C185798385 @default.
- W4324137519 hasConceptScore W4324137519C205649164 @default.
- W4324137519 hasConceptScore W4324137519C2780724565 @default.
- W4324137519 hasConceptScore W4324137519C34872919 @default.
- W4324137519 hasConceptScore W4324137519C41008148 @default.
- W4324137519 hasLocation W43241375191 @default.
- W4324137519 hasOpenAccess W4324137519 @default.
- W4324137519 hasPrimaryLocation W43241375191 @default.
- W4324137519 hasRelatedWork W1482110940 @default.
- W4324137519 hasRelatedWork W2026228882 @default.
- W4324137519 hasRelatedWork W2357420195 @default.
- W4324137519 hasRelatedWork W2375679214 @default.
- W4324137519 hasRelatedWork W2983506648 @default.
- W4324137519 hasRelatedWork W2991310754 @default.
- W4324137519 hasRelatedWork W3014664599 @default.
- W4324137519 hasRelatedWork W4316658362 @default.
- W4324137519 hasRelatedWork W4365421262 @default.
- W4324137519 hasRelatedWork W2742055519 @default.
- W4324137519 isParatext "false" @default.
- W4324137519 isRetracted "false" @default.
- W4324137519 workType "article" @default.