Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324142429> ?p ?o ?g. }
- W4324142429 endingPage "40" @default.
- W4324142429 startingPage "40" @default.
- W4324142429 abstract "Deep learning has been the answer to many machine learning problems during the past two decades. However, it comes with two significant constraints: dependency on extensive labeled data and training costs. Transfer learning in deep learning, known as Deep Transfer Learning (DTL), attempts to reduce such reliance and costs by reusing obtained knowledge from a source data/task in training on a target data/task. Most applied DTL techniques are network/model-based approaches. These methods reduce the dependency of deep learning models on extensive training data and drastically decrease training costs. Moreover, the training cost reduction makes DTL viable on edge devices with limited resources. Like any new advancement, DTL methods have their own limitations, and a successful transfer depends on specific adjustments and strategies for different scenarios. This paper reviews the concept, definition, and taxonomy of deep transfer learning and well-known methods. It investigates the DTL approaches by reviewing applied DTL techniques in the past five years and a couple of experimental analyses of DTLs to discover the best practice for using DTL in different scenarios. Moreover, the limitations of DTLs (catastrophic forgetting dilemma and overly biased pre-trained models) are discussed, along with possible solutions and research trends." @default.
- W4324142429 created "2023-03-15" @default.
- W4324142429 creator A5005432053 @default.
- W4324142429 creator A5035370466 @default.
- W4324142429 creator A5056934747 @default.
- W4324142429 date "2023-03-14" @default.
- W4324142429 modified "2023-10-16" @default.
- W4324142429 title "A Review of Deep Transfer Learning and Recent Advancements" @default.
- W4324142429 cites W2106956101 @default.
- W4324142429 cites W2441160157 @default.
- W4324142429 cites W2585658440 @default.
- W4324142429 cites W2739836671 @default.
- W4324142429 cites W2751052002 @default.
- W4324142429 cites W2763583057 @default.
- W4324142429 cites W2796600232 @default.
- W4324142429 cites W2801492038 @default.
- W4324142429 cites W2803920401 @default.
- W4324142429 cites W2804905867 @default.
- W4324142429 cites W2906031885 @default.
- W4324142429 cites W2906302663 @default.
- W4324142429 cites W2907864265 @default.
- W4324142429 cites W2911801153 @default.
- W4324142429 cites W2955805844 @default.
- W4324142429 cites W2957568672 @default.
- W4324142429 cites W2976700284 @default.
- W4324142429 cites W2982519139 @default.
- W4324142429 cites W2984201918 @default.
- W4324142429 cites W2990122260 @default.
- W4324142429 cites W2998634732 @default.
- W4324142429 cites W3009928129 @default.
- W4324142429 cites W3016794870 @default.
- W4324142429 cites W3039563973 @default.
- W4324142429 cites W3040660552 @default.
- W4324142429 cites W3041133507 @default.
- W4324142429 cites W3096423797 @default.
- W4324142429 cites W3131899115 @default.
- W4324142429 cites W3157429286 @default.
- W4324142429 cites W3174045760 @default.
- W4324142429 cites W3174909610 @default.
- W4324142429 cites W3204799710 @default.
- W4324142429 cites W3207111150 @default.
- W4324142429 cites W3216631677 @default.
- W4324142429 cites W3216828560 @default.
- W4324142429 cites W4225383527 @default.
- W4324142429 cites W4285326904 @default.
- W4324142429 doi "https://doi.org/10.3390/technologies11020040" @default.
- W4324142429 hasPublicationYear "2023" @default.
- W4324142429 type Work @default.
- W4324142429 citedByCount "23" @default.
- W4324142429 countsByYear W43241424292023 @default.
- W4324142429 crossrefType "journal-article" @default.
- W4324142429 hasAuthorship W4324142429A5005432053 @default.
- W4324142429 hasAuthorship W4324142429A5035370466 @default.
- W4324142429 hasAuthorship W4324142429A5056934747 @default.
- W4324142429 hasBestOaLocation W43241424291 @default.
- W4324142429 hasConcept C108583219 @default.
- W4324142429 hasConcept C111472728 @default.
- W4324142429 hasConcept C119857082 @default.
- W4324142429 hasConcept C127413603 @default.
- W4324142429 hasConcept C138885662 @default.
- W4324142429 hasConcept C150899416 @default.
- W4324142429 hasConcept C154945302 @default.
- W4324142429 hasConcept C19768560 @default.
- W4324142429 hasConcept C201995342 @default.
- W4324142429 hasConcept C2778496695 @default.
- W4324142429 hasConcept C2780451532 @default.
- W4324142429 hasConcept C41008148 @default.
- W4324142429 hasConcept C41895202 @default.
- W4324142429 hasConcept C7149132 @default.
- W4324142429 hasConceptScore W4324142429C108583219 @default.
- W4324142429 hasConceptScore W4324142429C111472728 @default.
- W4324142429 hasConceptScore W4324142429C119857082 @default.
- W4324142429 hasConceptScore W4324142429C127413603 @default.
- W4324142429 hasConceptScore W4324142429C138885662 @default.
- W4324142429 hasConceptScore W4324142429C150899416 @default.
- W4324142429 hasConceptScore W4324142429C154945302 @default.
- W4324142429 hasConceptScore W4324142429C19768560 @default.
- W4324142429 hasConceptScore W4324142429C201995342 @default.
- W4324142429 hasConceptScore W4324142429C2778496695 @default.
- W4324142429 hasConceptScore W4324142429C2780451532 @default.
- W4324142429 hasConceptScore W4324142429C41008148 @default.
- W4324142429 hasConceptScore W4324142429C41895202 @default.
- W4324142429 hasConceptScore W4324142429C7149132 @default.
- W4324142429 hasIssue "2" @default.
- W4324142429 hasLocation W43241424291 @default.
- W4324142429 hasLocation W43241424292 @default.
- W4324142429 hasLocation W43241424293 @default.
- W4324142429 hasLocation W43241424294 @default.
- W4324142429 hasLocation W43241424295 @default.
- W4324142429 hasOpenAccess W4324142429 @default.
- W4324142429 hasPrimaryLocation W43241424291 @default.
- W4324142429 hasRelatedWork W2889705046 @default.
- W4324142429 hasRelatedWork W2960456850 @default.
- W4324142429 hasRelatedWork W3192840557 @default.
- W4324142429 hasRelatedWork W4223943233 @default.
- W4324142429 hasRelatedWork W4312200629 @default.
- W4324142429 hasRelatedWork W4317565044 @default.
- W4324142429 hasRelatedWork W4360585206 @default.