Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324142479> ?p ?o ?g. }
- W4324142479 endingPage "1096" @default.
- W4324142479 startingPage "1096" @default.
- W4324142479 abstract "Chronic obstructive pulmonary disease (COPD) is a severe and chronic ailment that is currently ranked as the third most common cause of mortality across the globe. COPD patients often experience debilitating symptoms such as chronic coughing, shortness of breath, and fatigue. Sadly, the disease frequently goes undiagnosed until it is too late, leaving patients without the care they desperately need. So, COPD detection at an early stage is crucial to prevent further damage to the lungs and improve quality of life. Traditional COPD detection methods often rely on physical examinations and tests such as spirometry, chest radiography, blood gas tests, and genetic tests. However, these methods may not always be accurate or accessible. One of the key vital signs for detecting COPD is the patient's respiration rate. However, it is crucial to consider a patient's medical and demographic characteristics simultaneously for better detection results. To address this issue, this study aims to detect COPD patients using artificial intelligence techniques. To achieve this goal, a novel framework is proposed that utilizes ultra-wideband (UWB) radar-based temporal and spectral features to build machine learning and deep learning models. This new set of temporal and spectral features is extracted from respiration data collected non-invasively from 1.5 m distance using UWB radar. Different machine learning and deep learning models are trained and tested on the collected dataset. The findings are promising, with a high accuracy score of 100% for COPD detection. This means that the proposed framework could potentially save lives by identifying COPD patients at an early stage. The k-fold cross-validation technique and performance comparison with the state-of-the-art studies are applied to validate its performance, ensuring that the results are robust and reliable. The high accuracy score achieved in the study implies that the proposed framework has the potential for the efficient detection of COPD at an early stage." @default.
- W4324142479 created "2023-03-15" @default.
- W4324142479 creator A5029811891 @default.
- W4324142479 creator A5033845854 @default.
- W4324142479 creator A5046258353 @default.
- W4324142479 creator A5052549429 @default.
- W4324142479 creator A5055354839 @default.
- W4324142479 creator A5058941449 @default.
- W4324142479 creator A5072722978 @default.
- W4324142479 creator A5074629800 @default.
- W4324142479 creator A5085489082 @default.
- W4324142479 date "2023-03-14" @default.
- W4324142479 modified "2023-10-16" @default.
- W4324142479 title "An Approach to Detect Chronic Obstructive Pulmonary Disease Using UWB Radar-Based Temporal and Spectral Features" @default.
- W4324142479 cites W1570618453 @default.
- W4324142479 cites W2117739911 @default.
- W4324142479 cites W2123372099 @default.
- W4324142479 cites W2257429550 @default.
- W4324142479 cites W2586636870 @default.
- W4324142479 cites W2783742330 @default.
- W4324142479 cites W2785276416 @default.
- W4324142479 cites W2895422901 @default.
- W4324142479 cites W2939614761 @default.
- W4324142479 cites W2954103020 @default.
- W4324142479 cites W2964770898 @default.
- W4324142479 cites W2979528090 @default.
- W4324142479 cites W3008375417 @default.
- W4324142479 cites W303121095 @default.
- W4324142479 cites W3086029940 @default.
- W4324142479 cites W3089867583 @default.
- W4324142479 cites W3128301555 @default.
- W4324142479 cites W3133720588 @default.
- W4324142479 cites W3172734116 @default.
- W4324142479 cites W4295598648 @default.
- W4324142479 cites W4304761958 @default.
- W4324142479 cites W4308648934 @default.
- W4324142479 cites W4309674616 @default.
- W4324142479 doi "https://doi.org/10.3390/diagnostics13061096" @default.
- W4324142479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36980404" @default.
- W4324142479 hasPublicationYear "2023" @default.
- W4324142479 type Work @default.
- W4324142479 citedByCount "2" @default.
- W4324142479 countsByYear W43241424792023 @default.
- W4324142479 crossrefType "journal-article" @default.
- W4324142479 hasAuthorship W4324142479A5029811891 @default.
- W4324142479 hasAuthorship W4324142479A5033845854 @default.
- W4324142479 hasAuthorship W4324142479A5046258353 @default.
- W4324142479 hasAuthorship W4324142479A5052549429 @default.
- W4324142479 hasAuthorship W4324142479A5055354839 @default.
- W4324142479 hasAuthorship W4324142479A5058941449 @default.
- W4324142479 hasAuthorship W4324142479A5072722978 @default.
- W4324142479 hasAuthorship W4324142479A5074629800 @default.
- W4324142479 hasAuthorship W4324142479A5085489082 @default.
- W4324142479 hasBestOaLocation W43241424791 @default.
- W4324142479 hasConcept C108583219 @default.
- W4324142479 hasConcept C119857082 @default.
- W4324142479 hasConcept C126322002 @default.
- W4324142479 hasConcept C154945302 @default.
- W4324142479 hasConcept C177713679 @default.
- W4324142479 hasConcept C2776042228 @default.
- W4324142479 hasConcept C2776780178 @default.
- W4324142479 hasConcept C2780333948 @default.
- W4324142479 hasConcept C2992779976 @default.
- W4324142479 hasConcept C41008148 @default.
- W4324142479 hasConcept C554190296 @default.
- W4324142479 hasConcept C71924100 @default.
- W4324142479 hasConcept C76155785 @default.
- W4324142479 hasConceptScore W4324142479C108583219 @default.
- W4324142479 hasConceptScore W4324142479C119857082 @default.
- W4324142479 hasConceptScore W4324142479C126322002 @default.
- W4324142479 hasConceptScore W4324142479C154945302 @default.
- W4324142479 hasConceptScore W4324142479C177713679 @default.
- W4324142479 hasConceptScore W4324142479C2776042228 @default.
- W4324142479 hasConceptScore W4324142479C2776780178 @default.
- W4324142479 hasConceptScore W4324142479C2780333948 @default.
- W4324142479 hasConceptScore W4324142479C2992779976 @default.
- W4324142479 hasConceptScore W4324142479C41008148 @default.
- W4324142479 hasConceptScore W4324142479C554190296 @default.
- W4324142479 hasConceptScore W4324142479C71924100 @default.
- W4324142479 hasConceptScore W4324142479C76155785 @default.
- W4324142479 hasIssue "6" @default.
- W4324142479 hasLocation W43241424791 @default.
- W4324142479 hasLocation W43241424792 @default.
- W4324142479 hasLocation W43241424793 @default.
- W4324142479 hasLocation W43241424794 @default.
- W4324142479 hasOpenAccess W4324142479 @default.
- W4324142479 hasPrimaryLocation W43241424791 @default.
- W4324142479 hasRelatedWork W1988339248 @default.
- W4324142479 hasRelatedWork W2005813999 @default.
- W4324142479 hasRelatedWork W2052249297 @default.
- W4324142479 hasRelatedWork W2372071230 @default.
- W4324142479 hasRelatedWork W2602442496 @default.
- W4324142479 hasRelatedWork W2737670129 @default.
- W4324142479 hasRelatedWork W2805945940 @default.
- W4324142479 hasRelatedWork W4361214555 @default.
- W4324142479 hasRelatedWork W4380149143 @default.
- W4324142479 hasRelatedWork W2471584295 @default.
- W4324142479 hasVolume "13" @default.