Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324143882> ?p ?o ?g. }
- W4324143882 endingPage "573" @default.
- W4324143882 startingPage "573" @default.
- W4324143882 abstract "Increasing intensity and frequency of droughts are leading to forest dieback, growth decline and tree mortality worldwide. Reducing tree-to-tree competition for water resources is a primary goal for adaptive climate silviculture strategies, particularly in reforested areas with high planting density. Yet, we need better insights into the role of stand type (i.e., natural forests versus plantations) on the resilience of pine forests to droughts across varying time scales. In this study, we combined dendrochronological data and stable C (δ13C) and H (δ2H) isotopes measured in tree-ring wood as well as in specific wood chromatographically isolated compounds to investigate contrasting responses to drought of natural versus planted stands of two representative pine species, i.e., Pinus pinaster and Pinus nigra in southeastern Europe. Natural stands exhibited about two-fold increase in tree-ring growth in average (basal area at 20 years-BAI20) as compared to planted stands. A response function analysis showed contrasting seasonal growth patterns for both species, which were related to monthly mean temperature and precipitation. Both stand type and species variables influenced growth resilience indices. Both pine species revealed contrasting resilience patterns among forest types; whereas planted stands seemed to be less sensitive to yearly droughts as determined by a higher recovery index (CRc) for P. pinaster, the contrary was found in the case of P. nigra. On the other hand, while resistance CRT and resilience CRS indices were higher for planted than natural forests in the case of P. pinaster, little differences were found for P. nigra. Beyond comparisons, carbon stable isotopes shed lights on the role of forest types in dry sites, being δ13C consistently lower in natural than in planted forests for both pine species (p < 0.05). We concluded that planted forest assimilated more carbon as per unit of water used than natural stands in response to droughts. Both δ13C and δ2H isotopic signals were positively correlated for both species for planted forests. However, a lack of correlation was evidenced for natural stands. Consistent with δ13C observations, δ2H concentrations in woody phenolic compounds (guaiacol and oleic acid) revealed contrasting patterns among forest types. This puts forward that δ2H concentrations in woody phenolic compounds (rather than in woody tree ring) accounts for other confounding factors in tree ring formation that can be associated with forest type. Our results highlight the value of stable isotope approaches versus conventional dendrochronological tools in drought studies and call for the consideration of forest type as an endogenous aspect defining the vulnerability of pine forests to climate." @default.
- W4324143882 created "2023-03-15" @default.
- W4324143882 creator A5029663240 @default.
- W4324143882 creator A5032794142 @default.
- W4324143882 creator A5037807325 @default.
- W4324143882 creator A5042700938 @default.
- W4324143882 creator A5061920991 @default.
- W4324143882 creator A5073659110 @default.
- W4324143882 date "2023-03-13" @default.
- W4324143882 modified "2023-10-18" @default.
- W4324143882 title "Planted or Natural Pine Forests, Which One Will Better Recover after Drought? Insights from Tree Growth and Stable C and H Isotopes" @default.
- W4324143882 cites W1487289320 @default.
- W4324143882 cites W1939395177 @default.
- W4324143882 cites W1951564719 @default.
- W4324143882 cites W1951724000 @default.
- W4324143882 cites W1964849190 @default.
- W4324143882 cites W1986649263 @default.
- W4324143882 cites W2002486217 @default.
- W4324143882 cites W2006338703 @default.
- W4324143882 cites W2017252126 @default.
- W4324143882 cites W2038215949 @default.
- W4324143882 cites W2045061985 @default.
- W4324143882 cites W2059908137 @default.
- W4324143882 cites W2082157366 @default.
- W4324143882 cites W2100532524 @default.
- W4324143882 cites W2101914480 @default.
- W4324143882 cites W2103596388 @default.
- W4324143882 cites W2106621197 @default.
- W4324143882 cites W2108237454 @default.
- W4324143882 cites W2123004271 @default.
- W4324143882 cites W2137479355 @default.
- W4324143882 cites W2145777144 @default.
- W4324143882 cites W2154665369 @default.
- W4324143882 cites W2157402903 @default.
- W4324143882 cites W2166408453 @default.
- W4324143882 cites W2169017109 @default.
- W4324143882 cites W2171713235 @default.
- W4324143882 cites W2192906541 @default.
- W4324143882 cites W2272787985 @default.
- W4324143882 cites W2275184632 @default.
- W4324143882 cites W2299645425 @default.
- W4324143882 cites W2491956274 @default.
- W4324143882 cites W2520264764 @default.
- W4324143882 cites W2594591018 @default.
- W4324143882 cites W2790060117 @default.
- W4324143882 cites W2791183459 @default.
- W4324143882 cites W2791803664 @default.
- W4324143882 cites W2795542640 @default.
- W4324143882 cites W2807772814 @default.
- W4324143882 cites W2809286029 @default.
- W4324143882 cites W2887294330 @default.
- W4324143882 cites W2900605433 @default.
- W4324143882 cites W2963719165 @default.
- W4324143882 cites W2973395614 @default.
- W4324143882 cites W2990836367 @default.
- W4324143882 cites W3017231133 @default.
- W4324143882 cites W3022982669 @default.
- W4324143882 cites W3049580278 @default.
- W4324143882 cites W3088437091 @default.
- W4324143882 cites W3110370145 @default.
- W4324143882 cites W3111797270 @default.
- W4324143882 cites W3185342214 @default.
- W4324143882 cites W3188631316 @default.
- W4324143882 cites W3196791621 @default.
- W4324143882 cites W3198191046 @default.
- W4324143882 cites W4200156025 @default.
- W4324143882 cites W4214901135 @default.
- W4324143882 cites W4220749198 @default.
- W4324143882 cites W4280567829 @default.
- W4324143882 cites W4284893203 @default.
- W4324143882 cites W4285100867 @default.
- W4324143882 cites W4285121514 @default.
- W4324143882 cites W4312164119 @default.
- W4324143882 cites W979650297 @default.
- W4324143882 doi "https://doi.org/10.3390/f14030573" @default.
- W4324143882 hasPublicationYear "2023" @default.
- W4324143882 type Work @default.
- W4324143882 citedByCount "1" @default.
- W4324143882 countsByYear W43241438822023 @default.
- W4324143882 crossrefType "journal-article" @default.
- W4324143882 hasAuthorship W4324143882A5029663240 @default.
- W4324143882 hasAuthorship W4324143882A5032794142 @default.
- W4324143882 hasAuthorship W4324143882A5037807325 @default.
- W4324143882 hasAuthorship W4324143882A5042700938 @default.
- W4324143882 hasAuthorship W4324143882A5061920991 @default.
- W4324143882 hasAuthorship W4324143882A5073659110 @default.
- W4324143882 hasBestOaLocation W43241438821 @default.
- W4324143882 hasConcept C132651083 @default.
- W4324143882 hasConcept C151730666 @default.
- W4324143882 hasConcept C18678713 @default.
- W4324143882 hasConcept C18903297 @default.
- W4324143882 hasConcept C205649164 @default.
- W4324143882 hasConcept C2775966360 @default.
- W4324143882 hasConcept C2781131740 @default.
- W4324143882 hasConcept C54286561 @default.
- W4324143882 hasConcept C86803240 @default.
- W4324143882 hasConcept C91354502 @default.
- W4324143882 hasConcept C97137747 @default.