Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324145154> ?p ?o ?g. }
- W4324145154 endingPage "105671" @default.
- W4324145154 startingPage "105671" @default.
- W4324145154 abstract "Green Infrastructure (GI) measures are increasingly used for climate adaptation in urban areas, but it remains a challenge to evaluate their effectiveness and strategically allocate investment. Planning GI is subject to deep uncertainties and requires navigating tradeoffs between multiple objectives. Many-Objective Robust Decision Making (MORDM) can be useful in addressing these modeling challenges. Thus far, MORDM has been used sparsely for GI planning. To help mainstream MORDM applications in GI planning, we developed an open-source Python library: Rhodium-SWMM. Rhodium-SWMM connects the USEPA's Stormwater Management Model (SWMM) to Rhodium, a Python library for MORDM. Rhodium-SWMM provides a generalizable and flexible interface for taking SWMM input files and setting up a multi-objective optimization problem with the ability to define a wide range of parameters in the SWMM input file as uncertainties or levers. This opens opportunities to more conveniently analyze new research questions in multi-scale GI placement under deep uncertainty." @default.
- W4324145154 created "2023-03-15" @default.
- W4324145154 creator A5003894912 @default.
- W4324145154 creator A5039384786 @default.
- W4324145154 creator A5042920004 @default.
- W4324145154 creator A5056518494 @default.
- W4324145154 creator A5076442212 @default.
- W4324145154 creator A5077042612 @default.
- W4324145154 creator A5083276781 @default.
- W4324145154 date "2023-05-01" @default.
- W4324145154 modified "2023-09-25" @default.
- W4324145154 title "Rhodium-SWMM: An open-source tool for green infrastructure placement under deep uncertainty" @default.
- W4324145154 cites W1967493837 @default.
- W4324145154 cites W2039050307 @default.
- W4324145154 cites W2044111471 @default.
- W4324145154 cites W2046730015 @default.
- W4324145154 cites W2049246208 @default.
- W4324145154 cites W2092288318 @default.
- W4324145154 cites W2109150240 @default.
- W4324145154 cites W2109173570 @default.
- W4324145154 cites W2137854332 @default.
- W4324145154 cites W2153285070 @default.
- W4324145154 cites W2261074312 @default.
- W4324145154 cites W2282662248 @default.
- W4324145154 cites W2295141614 @default.
- W4324145154 cites W2740314633 @default.
- W4324145154 cites W2772112019 @default.
- W4324145154 cites W2776860805 @default.
- W4324145154 cites W2799639564 @default.
- W4324145154 cites W2803136515 @default.
- W4324145154 cites W2805631153 @default.
- W4324145154 cites W2885207275 @default.
- W4324145154 cites W2886051119 @default.
- W4324145154 cites W2889607157 @default.
- W4324145154 cites W2902824327 @default.
- W4324145154 cites W2903567724 @default.
- W4324145154 cites W2904980385 @default.
- W4324145154 cites W2922394387 @default.
- W4324145154 cites W2956056563 @default.
- W4324145154 cites W2964075609 @default.
- W4324145154 cites W2970710509 @default.
- W4324145154 cites W3023388112 @default.
- W4324145154 cites W3035413153 @default.
- W4324145154 cites W3046976329 @default.
- W4324145154 cites W3088393598 @default.
- W4324145154 cites W3094021725 @default.
- W4324145154 cites W3129393611 @default.
- W4324145154 cites W3139492868 @default.
- W4324145154 cites W3187047503 @default.
- W4324145154 cites W3188076876 @default.
- W4324145154 cites W3203087562 @default.
- W4324145154 cites W4246506621 @default.
- W4324145154 cites W4293660490 @default.
- W4324145154 doi "https://doi.org/10.1016/j.envsoft.2023.105671" @default.
- W4324145154 hasPublicationYear "2023" @default.
- W4324145154 type Work @default.
- W4324145154 citedByCount "0" @default.
- W4324145154 crossrefType "journal-article" @default.
- W4324145154 hasAuthorship W4324145154A5003894912 @default.
- W4324145154 hasAuthorship W4324145154A5039384786 @default.
- W4324145154 hasAuthorship W4324145154A5042920004 @default.
- W4324145154 hasAuthorship W4324145154A5056518494 @default.
- W4324145154 hasAuthorship W4324145154A5076442212 @default.
- W4324145154 hasAuthorship W4324145154A5077042612 @default.
- W4324145154 hasAuthorship W4324145154A5083276781 @default.
- W4324145154 hasConcept C107826830 @default.
- W4324145154 hasConcept C111919701 @default.
- W4324145154 hasConcept C127413603 @default.
- W4324145154 hasConcept C173051318 @default.
- W4324145154 hasConcept C18903297 @default.
- W4324145154 hasConcept C2776093225 @default.
- W4324145154 hasConcept C2780057273 @default.
- W4324145154 hasConcept C39432304 @default.
- W4324145154 hasConcept C41008148 @default.
- W4324145154 hasConcept C42475967 @default.
- W4324145154 hasConcept C50477045 @default.
- W4324145154 hasConcept C519991488 @default.
- W4324145154 hasConcept C86803240 @default.
- W4324145154 hasConceptScore W4324145154C107826830 @default.
- W4324145154 hasConceptScore W4324145154C111919701 @default.
- W4324145154 hasConceptScore W4324145154C127413603 @default.
- W4324145154 hasConceptScore W4324145154C173051318 @default.
- W4324145154 hasConceptScore W4324145154C18903297 @default.
- W4324145154 hasConceptScore W4324145154C2776093225 @default.
- W4324145154 hasConceptScore W4324145154C2780057273 @default.
- W4324145154 hasConceptScore W4324145154C39432304 @default.
- W4324145154 hasConceptScore W4324145154C41008148 @default.
- W4324145154 hasConceptScore W4324145154C42475967 @default.
- W4324145154 hasConceptScore W4324145154C50477045 @default.
- W4324145154 hasConceptScore W4324145154C519991488 @default.
- W4324145154 hasConceptScore W4324145154C86803240 @default.
- W4324145154 hasLocation W43241451541 @default.
- W4324145154 hasOpenAccess W4324145154 @default.
- W4324145154 hasPrimaryLocation W43241451541 @default.
- W4324145154 hasRelatedWork W2321200866 @default.
- W4324145154 hasRelatedWork W2327204559 @default.
- W4324145154 hasRelatedWork W2420788810 @default.
- W4324145154 hasRelatedWork W2587671147 @default.