Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324146720> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4324146720 abstract "The condition of plant root systems plays an important role in plant growth and development. The Minirhizotron method is an important tool to detect the dynamic growth and development of plant root systems. Currently, most researchers use manual methods or software to segment the root system for analysis and study. This method is time-consuming and requires a high level of operation. The complex background and variable environment in soils make traditional automated root system segmentation methods difficult to implement. Inspired by deep learning in medical imaging, which is used to segment pathological regions to help determine diseases, we propose a deep learning method for the root segmentation task. U-Net is chosen as the basis, and the encoder layer is replaced by the ResNet Block, which can reduce the training volume of the model and improve the feature utilization capability; the PSA module is added to the up-sampling part of U-Net to improve the segmentation accuracy of the object through multi-scale features and attention fusion; a new loss function is used to avoid the extreme imbalance and data imbalance problems of backgrounds such as root system and soil. After experimental comparison and analysis, the improved network demonstrates better performance. In the test set of the peanut root segmentation task, a pixel accuracy of 0.9917 and Intersection Over Union of 0.9548 were achieved, with an F1-score of 95.10. Finally, we used the Transfer Learning approach to conduct segmentation experiments on the corn in situ root system dataset. The experiments show that the improved network has a good learning effect and transferability." @default.
- W4324146720 created "2023-03-15" @default.
- W4324146720 creator A5003171860 @default.
- W4324146720 creator A5012959921 @default.
- W4324146720 creator A5046020341 @default.
- W4324146720 creator A5068695791 @default.
- W4324146720 date "2023-03-14" @default.
- W4324146720 modified "2023-09-29" @default.
- W4324146720 title "An improved U-Net-based in situ root system phenotype segmentation method for plants" @default.
- W4324146720 cites W1981250730 @default.
- W4324146720 cites W2018116075 @default.
- W4324146720 cites W2089597841 @default.
- W4324146720 cites W2090963364 @default.
- W4324146720 cites W2101948571 @default.
- W4324146720 cites W2110189581 @default.
- W4324146720 cites W2118450180 @default.
- W4324146720 cites W2162324010 @default.
- W4324146720 cites W2224618002 @default.
- W4324146720 cites W2396902692 @default.
- W4324146720 cites W2765413322 @default.
- W4324146720 cites W2936718694 @default.
- W4324146720 cites W2946232239 @default.
- W4324146720 cites W2950628671 @default.
- W4324146720 cites W2951046905 @default.
- W4324146720 cites W2989713062 @default.
- W4324146720 cites W3007017931 @default.
- W4324146720 cites W3026645015 @default.
- W4324146720 cites W3035939100 @default.
- W4324146720 cites W3049586951 @default.
- W4324146720 cites W3092842943 @default.
- W4324146720 cites W3168428105 @default.
- W4324146720 cites W3195223586 @default.
- W4324146720 cites W3198659451 @default.
- W4324146720 cites W4206693420 @default.
- W4324146720 cites W4224269597 @default.
- W4324146720 cites W4298152344 @default.
- W4324146720 cites W4308701837 @default.
- W4324146720 cites W4309705490 @default.
- W4324146720 cites W4312223130 @default.
- W4324146720 cites W4316035260 @default.
- W4324146720 cites W4322747009 @default.
- W4324146720 doi "https://doi.org/10.3389/fpls.2023.1115713" @default.
- W4324146720 hasPublicationYear "2023" @default.
- W4324146720 type Work @default.
- W4324146720 citedByCount "1" @default.
- W4324146720 countsByYear W43241467202023 @default.
- W4324146720 crossrefType "journal-article" @default.
- W4324146720 hasAuthorship W4324146720A5003171860 @default.
- W4324146720 hasAuthorship W4324146720A5012959921 @default.
- W4324146720 hasAuthorship W4324146720A5046020341 @default.
- W4324146720 hasAuthorship W4324146720A5068695791 @default.
- W4324146720 hasBestOaLocation W43241467201 @default.
- W4324146720 hasConcept C127413603 @default.
- W4324146720 hasConcept C138885662 @default.
- W4324146720 hasConcept C146978453 @default.
- W4324146720 hasConcept C153180895 @default.
- W4324146720 hasConcept C154945302 @default.
- W4324146720 hasConcept C171078966 @default.
- W4324146720 hasConcept C2524010 @default.
- W4324146720 hasConcept C2776401178 @default.
- W4324146720 hasConcept C2777210771 @default.
- W4324146720 hasConcept C33923547 @default.
- W4324146720 hasConcept C41008148 @default.
- W4324146720 hasConcept C41895202 @default.
- W4324146720 hasConcept C64543145 @default.
- W4324146720 hasConcept C89600930 @default.
- W4324146720 hasConceptScore W4324146720C127413603 @default.
- W4324146720 hasConceptScore W4324146720C138885662 @default.
- W4324146720 hasConceptScore W4324146720C146978453 @default.
- W4324146720 hasConceptScore W4324146720C153180895 @default.
- W4324146720 hasConceptScore W4324146720C154945302 @default.
- W4324146720 hasConceptScore W4324146720C171078966 @default.
- W4324146720 hasConceptScore W4324146720C2524010 @default.
- W4324146720 hasConceptScore W4324146720C2776401178 @default.
- W4324146720 hasConceptScore W4324146720C2777210771 @default.
- W4324146720 hasConceptScore W4324146720C33923547 @default.
- W4324146720 hasConceptScore W4324146720C41008148 @default.
- W4324146720 hasConceptScore W4324146720C41895202 @default.
- W4324146720 hasConceptScore W4324146720C64543145 @default.
- W4324146720 hasConceptScore W4324146720C89600930 @default.
- W4324146720 hasFunder F4320321001 @default.
- W4324146720 hasFunder F4320326178 @default.
- W4324146720 hasLocation W43241467201 @default.
- W4324146720 hasLocation W43241467202 @default.
- W4324146720 hasOpenAccess W4324146720 @default.
- W4324146720 hasPrimaryLocation W43241467201 @default.
- W4324146720 hasRelatedWork W1507687735 @default.
- W4324146720 hasRelatedWork W2015538044 @default.
- W4324146720 hasRelatedWork W2061502286 @default.
- W4324146720 hasRelatedWork W2510758617 @default.
- W4324146720 hasRelatedWork W2532775738 @default.
- W4324146720 hasRelatedWork W2754350655 @default.
- W4324146720 hasRelatedWork W2897195263 @default.
- W4324146720 hasRelatedWork W3185756512 @default.
- W4324146720 hasRelatedWork W4206076898 @default.
- W4324146720 hasRelatedWork W4226401448 @default.
- W4324146720 hasVolume "14" @default.
- W4324146720 isParatext "false" @default.
- W4324146720 isRetracted "false" @default.
- W4324146720 workType "article" @default.