Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324148963> ?p ?o ?g. }
- W4324148963 endingPage "1086" @default.
- W4324148963 startingPage "1086" @default.
- W4324148963 abstract "(1) Background: Three-dimensional (3D) facial anatomical landmarks are the premise and foundation of facial morphology analysis. At present, there is no ideal automatic determination method for 3D facial anatomical landmarks. This research aims to realize the automatic determination of 3D facial anatomical landmarks based on the non-rigid registration algorithm developed by our research team and to evaluate its landmark localization accuracy. (2) Methods: A 3D facial scanner, Face Scan, was used to collect 3D facial data of 20 adult males without significant facial deformities. Using the radial basis function optimized non-rigid registration algorithm, TH-OCR, developed by our research team (experimental group: TH group) and the non-rigid registration algorithm, MeshMonk (control group: MM group), a 3D face template constructed in our previous research was deformed and registered to each participant's data. The automatic determination of 3D facial anatomical landmarks was realized according to the index of 32 facial anatomical landmarks determined on the 3D face template. Considering these 32 facial anatomical landmarks manually selected by experts on the 3D facial data as the gold standard, the distance between the automatically determined and the corresponding manually selected facial anatomical landmarks was calculated as the landmark localization error to evaluate the effect and feasibility of the automatic determination method (template method). (3) Results: The mean landmark localization error of all facial anatomical landmarks in the TH and MM groups was 2.34 ± 1.76 mm and 2.16 ± 1.97 mm, respectively. The automatic determination of the anatomical landmarks in the middle face was better than that in the upper and lower face in both groups. Further, the automatic determination of anatomical landmarks in the center of the face was better than in the marginal part. (4) Conclusions: In this study, the automatic determination of 3D facial anatomical landmarks was realized based on non-rigid registration algorithms. There is no significant difference in the automatic landmark localization accuracy between the TH-OCR algorithm and the MeshMonk algorithm, and both can meet the needs of oral clinical applications to a certain extent." @default.
- W4324148963 created "2023-03-15" @default.
- W4324148963 creator A5023314270 @default.
- W4324148963 creator A5023874610 @default.
- W4324148963 creator A5030965866 @default.
- W4324148963 creator A5037100794 @default.
- W4324148963 creator A5037680248 @default.
- W4324148963 creator A5064399557 @default.
- W4324148963 creator A5066102428 @default.
- W4324148963 creator A5067419025 @default.
- W4324148963 date "2023-03-13" @default.
- W4324148963 modified "2023-10-06" @default.
- W4324148963 title "Comparison Study of Extraction Accuracy of 3D Facial Anatomical Landmarks Based on Non-Rigid Registration of Face Template" @default.
- W4324148963 cites W1703506123 @default.
- W4324148963 cites W1912922506 @default.
- W4324148963 cites W1921313333 @default.
- W4324148963 cites W1934852837 @default.
- W4324148963 cites W1979848248 @default.
- W4324148963 cites W1994630303 @default.
- W4324148963 cites W2004554993 @default.
- W4324148963 cites W2015690379 @default.
- W4324148963 cites W2046072855 @default.
- W4324148963 cites W2092544505 @default.
- W4324148963 cites W2110210125 @default.
- W4324148963 cites W2111109130 @default.
- W4324148963 cites W2132861804 @default.
- W4324148963 cites W2163662921 @default.
- W4324148963 cites W2314157580 @default.
- W4324148963 cites W2325052504 @default.
- W4324148963 cites W2574764964 @default.
- W4324148963 cites W2589017987 @default.
- W4324148963 cites W2606980007 @default.
- W4324148963 cites W2780506554 @default.
- W4324148963 cites W2800648243 @default.
- W4324148963 cites W2885102454 @default.
- W4324148963 cites W2905944778 @default.
- W4324148963 cites W2907562204 @default.
- W4324148963 cites W2912750015 @default.
- W4324148963 cites W3100719228 @default.
- W4324148963 cites W3119100306 @default.
- W4324148963 cites W3208612380 @default.
- W4324148963 cites W3215005136 @default.
- W4324148963 cites W4224245918 @default.
- W4324148963 cites W4226254410 @default.
- W4324148963 cites W4285719527 @default.
- W4324148963 cites W4362233846 @default.
- W4324148963 doi "https://doi.org/10.3390/diagnostics13061086" @default.
- W4324148963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36980394" @default.
- W4324148963 hasPublicationYear "2023" @default.
- W4324148963 type Work @default.
- W4324148963 citedByCount "0" @default.
- W4324148963 crossrefType "journal-article" @default.
- W4324148963 hasAuthorship W4324148963A5023314270 @default.
- W4324148963 hasAuthorship W4324148963A5023874610 @default.
- W4324148963 hasAuthorship W4324148963A5030965866 @default.
- W4324148963 hasAuthorship W4324148963A5037100794 @default.
- W4324148963 hasAuthorship W4324148963A5037680248 @default.
- W4324148963 hasAuthorship W4324148963A5064399557 @default.
- W4324148963 hasAuthorship W4324148963A5066102428 @default.
- W4324148963 hasAuthorship W4324148963A5067419025 @default.
- W4324148963 hasBestOaLocation W43241489631 @default.
- W4324148963 hasConcept C144024400 @default.
- W4324148963 hasConcept C153180895 @default.
- W4324148963 hasConcept C154945302 @default.
- W4324148963 hasConcept C2779304628 @default.
- W4324148963 hasConcept C2780297707 @default.
- W4324148963 hasConcept C31972630 @default.
- W4324148963 hasConcept C36289849 @default.
- W4324148963 hasConcept C41008148 @default.
- W4324148963 hasConceptScore W4324148963C144024400 @default.
- W4324148963 hasConceptScore W4324148963C153180895 @default.
- W4324148963 hasConceptScore W4324148963C154945302 @default.
- W4324148963 hasConceptScore W4324148963C2779304628 @default.
- W4324148963 hasConceptScore W4324148963C2780297707 @default.
- W4324148963 hasConceptScore W4324148963C31972630 @default.
- W4324148963 hasConceptScore W4324148963C36289849 @default.
- W4324148963 hasConceptScore W4324148963C41008148 @default.
- W4324148963 hasFunder F4320321001 @default.
- W4324148963 hasIssue "6" @default.
- W4324148963 hasLocation W43241489631 @default.
- W4324148963 hasLocation W43241489632 @default.
- W4324148963 hasLocation W43241489633 @default.
- W4324148963 hasLocation W43241489634 @default.
- W4324148963 hasOpenAccess W4324148963 @default.
- W4324148963 hasPrimaryLocation W43241489631 @default.
- W4324148963 hasRelatedWork W166366606 @default.
- W4324148963 hasRelatedWork W2016546218 @default.
- W4324148963 hasRelatedWork W2098911910 @default.
- W4324148963 hasRelatedWork W2148343984 @default.
- W4324148963 hasRelatedWork W2352223314 @default.
- W4324148963 hasRelatedWork W2509104183 @default.
- W4324148963 hasRelatedWork W2509618504 @default.
- W4324148963 hasRelatedWork W586143910 @default.
- W4324148963 hasRelatedWork W99616944 @default.
- W4324148963 hasRelatedWork W2156243485 @default.
- W4324148963 hasVolume "13" @default.
- W4324148963 isParatext "false" @default.
- W4324148963 isRetracted "false" @default.