Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324149114> ?p ?o ?g. }
- W4324149114 endingPage "3655" @default.
- W4324149114 startingPage "3655" @default.
- W4324149114 abstract "Predicting network abnormal events and behavior can enhance security situation awareness and the ability to infer attack intentions. Most of the existing abnormal event prediction methods usually rely on the temporal relationship features between events and the spatial relationship features between hosts. However, the existing spatio-temporal anomaly event prediction methods do not fully consider the spatial relationship between events and the cross-domain environment of the behavior, resulting in poor performance in practical applications. In addition, the existing methods are mostly based on Euclidean space and hyperbolic space in terms of feature space relationship representation and do not fully consider the complexity of the relationship structure of anomalous events. In this paper, we propose a cross-domain spatio-temporal abnormal events prediction method, referred to as CDSTAEP. This method divides the local event sequence based on the temporal behavior sequence of entities and realizes the graphical representation of the multi-domain event correlation relationship. In the mixed-curvature space, we realize the representation learning of the correlation relationship of complex events and combine the event mixed-curvature vector representation and attention-based long short-term memory (LSTM-ATT) to capture the spatial and temporal correlation characteristics of cross-domain events, and finally realize the prediction. In this paper the proposed CDSTAEP is verified with the live network data set collected by a national key research and development plan. The results demonstrate that CDSTAEP can retain more spatial relationship features between events, the area under roc curve (AUC) score is better than the result of single-space representation and is 4.53% and 6.699% higher than the baseline models such as LSTM and LSTM-ATT." @default.
- W4324149114 created "2023-03-15" @default.
- W4324149114 creator A5059577007 @default.
- W4324149114 creator A5087907871 @default.
- W4324149114 creator A5088713388 @default.
- W4324149114 creator A5089827558 @default.
- W4324149114 date "2023-03-13" @default.
- W4324149114 modified "2023-09-25" @default.
- W4324149114 title "CDSTAEP: Cross-Domain Spatial-Temporal Association Learning for Abnormal Events Prediction" @default.
- W4324149114 cites W1153501282 @default.
- W4324149114 cites W1971215074 @default.
- W4324149114 cites W2012649175 @default.
- W4324149114 cites W2030407863 @default.
- W4324149114 cites W2062797058 @default.
- W4324149114 cites W2101492723 @default.
- W4324149114 cites W2132948040 @default.
- W4324149114 cites W2146521571 @default.
- W4324149114 cites W2148604310 @default.
- W4324149114 cites W2149252451 @default.
- W4324149114 cites W2167597870 @default.
- W4324149114 cites W2239042234 @default.
- W4324149114 cites W2788284887 @default.
- W4324149114 cites W2804048727 @default.
- W4324149114 cites W2892859754 @default.
- W4324149114 cites W2914028805 @default.
- W4324149114 cites W3100458477 @default.
- W4324149114 cites W3103283534 @default.
- W4324149114 cites W3129435614 @default.
- W4324149114 cites W3129998940 @default.
- W4324149114 cites W3146615890 @default.
- W4324149114 cites W3164410012 @default.
- W4324149114 cites W4206139996 @default.
- W4324149114 cites W4226325719 @default.
- W4324149114 doi "https://doi.org/10.3390/app13063655" @default.
- W4324149114 hasPublicationYear "2023" @default.
- W4324149114 type Work @default.
- W4324149114 citedByCount "0" @default.
- W4324149114 crossrefType "journal-article" @default.
- W4324149114 hasAuthorship W4324149114A5059577007 @default.
- W4324149114 hasAuthorship W4324149114A5087907871 @default.
- W4324149114 hasAuthorship W4324149114A5088713388 @default.
- W4324149114 hasAuthorship W4324149114A5089827558 @default.
- W4324149114 hasBestOaLocation W43241491141 @default.
- W4324149114 hasConcept C111472728 @default.
- W4324149114 hasConcept C117220453 @default.
- W4324149114 hasConcept C119857082 @default.
- W4324149114 hasConcept C121332964 @default.
- W4324149114 hasConcept C124101348 @default.
- W4324149114 hasConcept C134306372 @default.
- W4324149114 hasConcept C138885662 @default.
- W4324149114 hasConcept C142853389 @default.
- W4324149114 hasConcept C153180895 @default.
- W4324149114 hasConcept C154945302 @default.
- W4324149114 hasConcept C17744445 @default.
- W4324149114 hasConcept C199539241 @default.
- W4324149114 hasConcept C2524010 @default.
- W4324149114 hasConcept C2776359362 @default.
- W4324149114 hasConcept C2779662365 @default.
- W4324149114 hasConcept C33923547 @default.
- W4324149114 hasConcept C36503486 @default.
- W4324149114 hasConcept C41008148 @default.
- W4324149114 hasConcept C62520636 @default.
- W4324149114 hasConcept C94625758 @default.
- W4324149114 hasConceptScore W4324149114C111472728 @default.
- W4324149114 hasConceptScore W4324149114C117220453 @default.
- W4324149114 hasConceptScore W4324149114C119857082 @default.
- W4324149114 hasConceptScore W4324149114C121332964 @default.
- W4324149114 hasConceptScore W4324149114C124101348 @default.
- W4324149114 hasConceptScore W4324149114C134306372 @default.
- W4324149114 hasConceptScore W4324149114C138885662 @default.
- W4324149114 hasConceptScore W4324149114C142853389 @default.
- W4324149114 hasConceptScore W4324149114C153180895 @default.
- W4324149114 hasConceptScore W4324149114C154945302 @default.
- W4324149114 hasConceptScore W4324149114C17744445 @default.
- W4324149114 hasConceptScore W4324149114C199539241 @default.
- W4324149114 hasConceptScore W4324149114C2524010 @default.
- W4324149114 hasConceptScore W4324149114C2776359362 @default.
- W4324149114 hasConceptScore W4324149114C2779662365 @default.
- W4324149114 hasConceptScore W4324149114C33923547 @default.
- W4324149114 hasConceptScore W4324149114C36503486 @default.
- W4324149114 hasConceptScore W4324149114C41008148 @default.
- W4324149114 hasConceptScore W4324149114C62520636 @default.
- W4324149114 hasConceptScore W4324149114C94625758 @default.
- W4324149114 hasIssue "6" @default.
- W4324149114 hasLocation W43241491141 @default.
- W4324149114 hasOpenAccess W4324149114 @default.
- W4324149114 hasPrimaryLocation W43241491141 @default.
- W4324149114 hasRelatedWork W2961085424 @default.
- W4324149114 hasRelatedWork W3046775127 @default.
- W4324149114 hasRelatedWork W3170094116 @default.
- W4324149114 hasRelatedWork W4205958290 @default.
- W4324149114 hasRelatedWork W4285260836 @default.
- W4324149114 hasRelatedWork W4286629047 @default.
- W4324149114 hasRelatedWork W4306321456 @default.
- W4324149114 hasRelatedWork W4306674287 @default.
- W4324149114 hasRelatedWork W4386462264 @default.
- W4324149114 hasRelatedWork W4224009465 @default.
- W4324149114 hasVolume "13" @default.