Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324149700> ?p ?o ?g. }
- W4324149700 endingPage "1578" @default.
- W4324149700 startingPage "1556" @default.
- W4324149700 abstract "Due to the instability of sensors and other factors, hyperspectral images (HSIs) are inevitably polluted by various types of mixed noise. To explore a better denoising method based on the existing research, combining the denoising advantages of tensor-ring (TR) decomposition and tensor robust principal component analysis (TRPCA), a mixed-noise removal method for HSIs is proposed in this paper. First, TRPCA maintains the tensor structure of the image itself, accurately recovers the low-rank part and the sparse part from their sum and separates the sparse noise in the form of sparse tensors. Then, TR decomposition is introduced to denoise the low-rank tensors. To verify the effectiveness and superiority of this method, experiments are carried out on two simulated data sets and two real data sets. Compared with the traditional denoising methods and several existing improved denoising methods from both visual and quantitative aspects, the proposed TRPCA-TR method provides better denoising results." @default.
- W4324149700 created "2023-03-15" @default.
- W4324149700 creator A5002937692 @default.
- W4324149700 creator A5007354180 @default.
- W4324149700 creator A5024970517 @default.
- W4324149700 creator A5030770038 @default.
- W4324149700 creator A5041191165 @default.
- W4324149700 creator A5076113604 @default.
- W4324149700 date "2023-03-04" @default.
- W4324149700 modified "2023-10-16" @default.
- W4324149700 title "Hyperspectral image mixed noise removal via tensor robust principal component analysis with tensor-ring decomposition" @default.
- W4324149700 cites W1899329334 @default.
- W4324149700 cites W1944540851 @default.
- W4324149700 cites W1967138577 @default.
- W4324149700 cites W1985242206 @default.
- W4324149700 cites W1988868707 @default.
- W4324149700 cites W1994040806 @default.
- W4324149700 cites W2039596145 @default.
- W4324149700 cites W2053514113 @default.
- W4324149700 cites W2056370875 @default.
- W4324149700 cites W2082600204 @default.
- W4324149700 cites W2103559027 @default.
- W4324149700 cites W2126773133 @default.
- W4324149700 cites W2133665775 @default.
- W4324149700 cites W2141983208 @default.
- W4324149700 cites W2144348684 @default.
- W4324149700 cites W2145962650 @default.
- W4324149700 cites W2160924560 @default.
- W4324149700 cites W2162276208 @default.
- W4324149700 cites W2163886442 @default.
- W4324149700 cites W2171520281 @default.
- W4324149700 cites W2293524743 @default.
- W4324149700 cites W2344955579 @default.
- W4324149700 cites W2598997103 @default.
- W4324149700 cites W2604977491 @default.
- W4324149700 cites W2625894731 @default.
- W4324149700 cites W2735711969 @default.
- W4324149700 cites W2743606449 @default.
- W4324149700 cites W2792473404 @default.
- W4324149700 cites W2805465265 @default.
- W4324149700 cites W2913935587 @default.
- W4324149700 cites W2945202593 @default.
- W4324149700 cites W2953843381 @default.
- W4324149700 cites W2960360058 @default.
- W4324149700 cites W2963885538 @default.
- W4324149700 cites W2964146769 @default.
- W4324149700 cites W2964214749 @default.
- W4324149700 cites W2982007765 @default.
- W4324149700 cites W2998656915 @default.
- W4324149700 cites W3104072696 @default.
- W4324149700 cites W3171243408 @default.
- W4324149700 cites W4292363360 @default.
- W4324149700 doi "https://doi.org/10.1080/01431161.2023.2187720" @default.
- W4324149700 hasPublicationYear "2023" @default.
- W4324149700 type Work @default.
- W4324149700 citedByCount "1" @default.
- W4324149700 countsByYear W43241497002023 @default.
- W4324149700 crossrefType "journal-article" @default.
- W4324149700 hasAuthorship W4324149700A5002937692 @default.
- W4324149700 hasAuthorship W4324149700A5007354180 @default.
- W4324149700 hasAuthorship W4324149700A5024970517 @default.
- W4324149700 hasAuthorship W4324149700A5030770038 @default.
- W4324149700 hasAuthorship W4324149700A5041191165 @default.
- W4324149700 hasAuthorship W4324149700A5076113604 @default.
- W4324149700 hasConcept C113315163 @default.
- W4324149700 hasConcept C114614502 @default.
- W4324149700 hasConcept C115961682 @default.
- W4324149700 hasConcept C124681953 @default.
- W4324149700 hasConcept C153180895 @default.
- W4324149700 hasConcept C154945302 @default.
- W4324149700 hasConcept C155281189 @default.
- W4324149700 hasConcept C159078339 @default.
- W4324149700 hasConcept C163294075 @default.
- W4324149700 hasConcept C164226766 @default.
- W4324149700 hasConcept C178790620 @default.
- W4324149700 hasConcept C185592680 @default.
- W4324149700 hasConcept C2524010 @default.
- W4324149700 hasConcept C27438332 @default.
- W4324149700 hasConcept C2777749129 @default.
- W4324149700 hasConcept C2986737658 @default.
- W4324149700 hasConcept C33923547 @default.
- W4324149700 hasConcept C41008148 @default.
- W4324149700 hasConcept C99498987 @default.
- W4324149700 hasConceptScore W4324149700C113315163 @default.
- W4324149700 hasConceptScore W4324149700C114614502 @default.
- W4324149700 hasConceptScore W4324149700C115961682 @default.
- W4324149700 hasConceptScore W4324149700C124681953 @default.
- W4324149700 hasConceptScore W4324149700C153180895 @default.
- W4324149700 hasConceptScore W4324149700C154945302 @default.
- W4324149700 hasConceptScore W4324149700C155281189 @default.
- W4324149700 hasConceptScore W4324149700C159078339 @default.
- W4324149700 hasConceptScore W4324149700C163294075 @default.
- W4324149700 hasConceptScore W4324149700C164226766 @default.
- W4324149700 hasConceptScore W4324149700C178790620 @default.
- W4324149700 hasConceptScore W4324149700C185592680 @default.
- W4324149700 hasConceptScore W4324149700C2524010 @default.
- W4324149700 hasConceptScore W4324149700C27438332 @default.
- W4324149700 hasConceptScore W4324149700C2777749129 @default.