Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324155140> ?p ?o ?g. }
- W4324155140 endingPage "5089" @default.
- W4324155140 startingPage "5089" @default.
- W4324155140 abstract "Predicting air quality is a very important task, as it is known to have a significant impact on health. The Bay of Algeciras (Spain) is a highly industrialised area with one of the largest superports in Europe. During the period 2017–2019, different data were recorded in the monitoring stations of the bay, forming a database of 131 variables (air pollutants, meteorological information, and vessel data), which were predicted in the Algeciras station using long short-term memory models. Four different approaches have been developed to make SO2 and NO2 forecasts 1 h and 4 h in Algeciras. The first uses the remaining 130 exogenous variables. The second uses only the time series data without exogenous variables. The third approach consists of using an autoregressive time series arrangement as input, and the fourth one is similar, using the time series together with wind and ship data. The results showed that SO2 is better predicted with autoregressive information and NO2 is better predicted with ships and wind autoregressive time series, indicating that NO2 is closely related to combustion engines and can be better predicted. The interest of this study is based on the fact that it can serve as a resource for making informed decisions for authorities, companies, and citizens alike." @default.
- W4324155140 created "2023-03-15" @default.
- W4324155140 creator A5028082915 @default.
- W4324155140 creator A5033462427 @default.
- W4324155140 creator A5070917357 @default.
- W4324155140 creator A5077100121 @default.
- W4324155140 creator A5078267073 @default.
- W4324155140 date "2023-03-13" @default.
- W4324155140 modified "2023-09-23" @default.
- W4324155140 title "Long Short-Term Memory Approach for Short-Term Air Quality Forecasting in the Bay of Algeciras (Spain)" @default.
- W4324155140 cites W1969865391 @default.
- W4324155140 cites W1973800327 @default.
- W4324155140 cites W1981020138 @default.
- W4324155140 cites W1987557628 @default.
- W4324155140 cites W2002809601 @default.
- W4324155140 cites W2037460094 @default.
- W4324155140 cites W2040829617 @default.
- W4324155140 cites W2064675550 @default.
- W4324155140 cites W2081538223 @default.
- W4324155140 cites W2082481714 @default.
- W4324155140 cites W2085170681 @default.
- W4324155140 cites W2099409016 @default.
- W4324155140 cites W2111286455 @default.
- W4324155140 cites W2125848133 @default.
- W4324155140 cites W2236793609 @default.
- W4324155140 cites W2522403126 @default.
- W4324155140 cites W2569559000 @default.
- W4324155140 cites W2803892188 @default.
- W4324155140 cites W2810586154 @default.
- W4324155140 cites W2908982823 @default.
- W4324155140 cites W2919115771 @default.
- W4324155140 cites W2968727027 @default.
- W4324155140 cites W2979594870 @default.
- W4324155140 cites W3012110712 @default.
- W4324155140 cites W3012931081 @default.
- W4324155140 cites W3012957873 @default.
- W4324155140 cites W3027059498 @default.
- W4324155140 cites W3039344276 @default.
- W4324155140 cites W3083561918 @default.
- W4324155140 cites W3119770420 @default.
- W4324155140 cites W3134159660 @default.
- W4324155140 cites W3135574807 @default.
- W4324155140 cites W3154863786 @default.
- W4324155140 cites W3165619714 @default.
- W4324155140 cites W389035508 @default.
- W4324155140 cites W4205135106 @default.
- W4324155140 cites W4205210034 @default.
- W4324155140 cites W4214698402 @default.
- W4324155140 cites W4220667869 @default.
- W4324155140 cites W4221047304 @default.
- W4324155140 cites W4281610682 @default.
- W4324155140 cites W4294832527 @default.
- W4324155140 cites W4295743165 @default.
- W4324155140 cites W4297887592 @default.
- W4324155140 cites W4303982237 @default.
- W4324155140 cites W4306769796 @default.
- W4324155140 cites W4307816161 @default.
- W4324155140 cites W4308364415 @default.
- W4324155140 cites W4308645606 @default.
- W4324155140 cites W4310679926 @default.
- W4324155140 cites W4313201974 @default.
- W4324155140 cites W4318999375 @default.
- W4324155140 doi "https://doi.org/10.3390/su15065089" @default.
- W4324155140 hasPublicationYear "2023" @default.
- W4324155140 type Work @default.
- W4324155140 citedByCount "3" @default.
- W4324155140 countsByYear W43241551402023 @default.
- W4324155140 crossrefType "journal-article" @default.
- W4324155140 hasAuthorship W4324155140A5028082915 @default.
- W4324155140 hasAuthorship W4324155140A5033462427 @default.
- W4324155140 hasAuthorship W4324155140A5070917357 @default.
- W4324155140 hasAuthorship W4324155140A5077100121 @default.
- W4324155140 hasAuthorship W4324155140A5078267073 @default.
- W4324155140 hasBestOaLocation W43241551401 @default.
- W4324155140 hasConcept C105795698 @default.
- W4324155140 hasConcept C115880899 @default.
- W4324155140 hasConcept C121332964 @default.
- W4324155140 hasConcept C126314574 @default.
- W4324155140 hasConcept C143724316 @default.
- W4324155140 hasConcept C149782125 @default.
- W4324155140 hasConcept C151406439 @default.
- W4324155140 hasConcept C151730666 @default.
- W4324155140 hasConcept C153294291 @default.
- W4324155140 hasConcept C159877910 @default.
- W4324155140 hasConcept C161067210 @default.
- W4324155140 hasConcept C166957645 @default.
- W4324155140 hasConcept C205649164 @default.
- W4324155140 hasConcept C206345919 @default.
- W4324155140 hasConcept C31258907 @default.
- W4324155140 hasConcept C33923547 @default.
- W4324155140 hasConcept C39432304 @default.
- W4324155140 hasConcept C41008148 @default.
- W4324155140 hasConcept C61797465 @default.
- W4324155140 hasConcept C62520636 @default.
- W4324155140 hasConcept C86803240 @default.
- W4324155140 hasConceptScore W4324155140C105795698 @default.
- W4324155140 hasConceptScore W4324155140C115880899 @default.
- W4324155140 hasConceptScore W4324155140C121332964 @default.