Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324257215> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4324257215 endingPage "104790" @default.
- W4324257215 startingPage "104790" @default.
- W4324257215 abstract "Skin blood flow (SBF) has been assessed using the time domain and time–frequency domain methods. However, these methods require prior knowledge of selecting appropriate parameters for characterizing SBF responses. Deep learning has been successful on classification of medical images, and could be a promising tool for assessing SBF in various pathophysiological conditions. In this study, we proposed a deep learning-based framework for converting 1-dimensional time-series SBF into 2-dimensional time–frequency SBF for convolutional neural networks (CNNs). Thirty-seven participants were recruited into this study, including 21 people with spinal cord injury (SCI) and 16 healthy able-bodied controls. Laser Doppler flowmetry was used to measure sacral SBF. Continuous wavelet transform was used to obtain time–frequency representations of SBF. The whole frequency (WF, 0.0095–2 Hz), high frequency (HF, 0.138–2 Hz), and low frequency (LF, 0.0095–0.138 Hz) regions of the wavelet amplitudes were partitioned into the nonoverlapping patches. Four CNNs including AlexNet, Vgg-19, GoogLeNet, and ResNet-18 were employed to classify the patches. The results showed that the time-domain biphasic thermal index could not differentiate SBF in all groups. Time-frequency wavelet analysis showed differences in myogenic and cardiac controls between people with SCI who were active and sedentary (p < 0.01). CNNs results showed that all participants could be correctly classified based on the WF patches (100% of accuracy) compared to the HF (50–100%) and LF (66.7–100%) patches and five individual oscillation components (50–57.1%). Our study demonstrated that the classifiers could detect subtle changes in SBF function that cannot be revealed by the traditional methods." @default.
- W4324257215 created "2023-03-15" @default.
- W4324257215 creator A5012392464 @default.
- W4324257215 creator A5080909004 @default.
- W4324257215 date "2023-07-01" @default.
- W4324257215 modified "2023-10-18" @default.
- W4324257215 title "Assessing skin blood flow function in people with spinal cord injury using the time domain, time–frequency domain and deep learning approaches" @default.
- W4324257215 cites W1504361421 @default.
- W4324257215 cites W2006252092 @default.
- W4324257215 cites W2015620216 @default.
- W4324257215 cites W2024624318 @default.
- W4324257215 cites W2063004230 @default.
- W4324257215 cites W2065031884 @default.
- W4324257215 cites W2069309719 @default.
- W4324257215 cites W2084731399 @default.
- W4324257215 cites W2087313110 @default.
- W4324257215 cites W2089515150 @default.
- W4324257215 cites W2108598243 @default.
- W4324257215 cites W2164243719 @default.
- W4324257215 cites W2193577900 @default.
- W4324257215 cites W2194775991 @default.
- W4324257215 cites W2611842420 @default.
- W4324257215 cites W2900407599 @default.
- W4324257215 cites W2987086808 @default.
- W4324257215 cites W3194729302 @default.
- W4324257215 doi "https://doi.org/10.1016/j.bspc.2023.104790" @default.
- W4324257215 hasPublicationYear "2023" @default.
- W4324257215 type Work @default.
- W4324257215 citedByCount "0" @default.
- W4324257215 crossrefType "journal-article" @default.
- W4324257215 hasAuthorship W4324257215A5012392464 @default.
- W4324257215 hasAuthorship W4324257215A5080909004 @default.
- W4324257215 hasConcept C103824480 @default.
- W4324257215 hasConcept C106131492 @default.
- W4324257215 hasConcept C108583219 @default.
- W4324257215 hasConcept C118552586 @default.
- W4324257215 hasConcept C142433447 @default.
- W4324257215 hasConcept C153180895 @default.
- W4324257215 hasConcept C154945302 @default.
- W4324257215 hasConcept C158846371 @default.
- W4324257215 hasConcept C164705383 @default.
- W4324257215 hasConcept C19118579 @default.
- W4324257215 hasConcept C2778334475 @default.
- W4324257215 hasConcept C2780775167 @default.
- W4324257215 hasConcept C31972630 @default.
- W4324257215 hasConcept C41008148 @default.
- W4324257215 hasConcept C47432892 @default.
- W4324257215 hasConcept C52305850 @default.
- W4324257215 hasConcept C71924100 @default.
- W4324257215 hasConcept C81363708 @default.
- W4324257215 hasConceptScore W4324257215C103824480 @default.
- W4324257215 hasConceptScore W4324257215C106131492 @default.
- W4324257215 hasConceptScore W4324257215C108583219 @default.
- W4324257215 hasConceptScore W4324257215C118552586 @default.
- W4324257215 hasConceptScore W4324257215C142433447 @default.
- W4324257215 hasConceptScore W4324257215C153180895 @default.
- W4324257215 hasConceptScore W4324257215C154945302 @default.
- W4324257215 hasConceptScore W4324257215C158846371 @default.
- W4324257215 hasConceptScore W4324257215C164705383 @default.
- W4324257215 hasConceptScore W4324257215C19118579 @default.
- W4324257215 hasConceptScore W4324257215C2778334475 @default.
- W4324257215 hasConceptScore W4324257215C2780775167 @default.
- W4324257215 hasConceptScore W4324257215C31972630 @default.
- W4324257215 hasConceptScore W4324257215C41008148 @default.
- W4324257215 hasConceptScore W4324257215C47432892 @default.
- W4324257215 hasConceptScore W4324257215C52305850 @default.
- W4324257215 hasConceptScore W4324257215C71924100 @default.
- W4324257215 hasConceptScore W4324257215C81363708 @default.
- W4324257215 hasFunder F4320336567 @default.
- W4324257215 hasLocation W43242572151 @default.
- W4324257215 hasOpenAccess W4324257215 @default.
- W4324257215 hasPrimaryLocation W43242572151 @default.
- W4324257215 hasRelatedWork W204453391 @default.
- W4324257215 hasRelatedWork W2045294366 @default.
- W4324257215 hasRelatedWork W2097245238 @default.
- W4324257215 hasRelatedWork W2585412635 @default.
- W4324257215 hasRelatedWork W2738221750 @default.
- W4324257215 hasRelatedWork W2755448188 @default.
- W4324257215 hasRelatedWork W3156786002 @default.
- W4324257215 hasRelatedWork W3174444331 @default.
- W4324257215 hasRelatedWork W3216753168 @default.
- W4324257215 hasRelatedWork W564581980 @default.
- W4324257215 hasVolume "84" @default.
- W4324257215 isParatext "false" @default.
- W4324257215 isRetracted "false" @default.
- W4324257215 workType "article" @default.