Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324257317> ?p ?o ?g. }
- W4324257317 endingPage "1075" @default.
- W4324257317 startingPage "1047" @default.
- W4324257317 abstract "Abstract. The alteration in river flow patterns, particularly those that originate in the Himalaya, has been caused by the increased temperature and rainfall variability brought on by climate change. Due to the impending intensification of extreme climate events, as predicted by the Intergovernmental Panel on Climate Change (IPCC) in its Sixth Assessment Report, it is more essential than ever to predict changes in streamflow for future periods. Despite the fact that some research has utilised machine-learning- and deep-learning-based models to predict streamflow patterns in response to climate change, very few studies have been undertaken for a mountainous catchment, with the number of studies for the western Himalaya being minimal. This study investigates the capability of five different machine learning (ML) models and one deep learning (DL) model, namely the Gaussian linear regression model (GLM), Gaussian generalised additive model (GAM), multivariate adaptive regression splines (MARSs), artificial neural network (ANN), random forest (RF), and 1D convolutional neural network (1D-CNN), in streamflow prediction over the Sutlej River basin in the western Himalaya during the periods 2041–2070 (2050s) and 2071–2100 (2080s). Bias-corrected data downscaled at a grid resolution of 0.25∘ × 0.25∘ from six general circulation models (GCMs) of the Coupled Model Intercomparison Project Phase 6 GCM framework under two greenhouse gas (GHG) trajectories (SSP245 and SSP585) were used for this purpose. Four different rainfall scenarios (R0, R1, R2, and R3) were applied to the models trained with daily data (1979–2009) at Kasol (the outlet of the basin) in order to better understand how catchment size and the geo-hydromorphological aspects of the basin affect runoff. The predictive power of each model was assessed using six statistical measures, i.e. the coefficient of determination (R2), the ratio of the root mean square error to the standard deviation of the measured data (RSR), the mean absolute error (MAE), the Kling–Gupta efficiency (KGE), the Nash–Sutcliffe efficiency (NSE), and the percent bias (PBIAS). The RF model with rainfall scenario R3, which outperformed other models during the training (R2 = 0.90; RSR = 0.32; KGE = 0.87; NSE = 0.87; PBIAS = 0.03) and testing (R2 = 0.78; RSR = 0.47; KGE = 0.82; NSE = 0.71; PBIAS = −0.31) period, therefore was chosen to simulate streamflow in the Sutlej River in the 2050s and 2080s under the SSP245 and SSP585 scenarios. Bias correction was further applied to the projected daily streamflow in order to generate a reliable times series of the discharge. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between 2050s and 2080s by 0.79 % to 1.43 % for SSP585 and by 0.87 % to 1.10 % for SSP245. In addition, streamflow will increase during the monsoon (9.70 % to 11.41 % and 11.64 % to 12.70 %) in the 2050s and 2080s under both emission scenarios, but it will decrease during the pre-monsoon (−10.36 % to −6.12 % and −10.0 % to −9.13 %), post-monsoon (−1.23 % to −0.22 % and −5.59 % to −2.83 %), and during the winter (−21.87 % to −21.52 % and −21.87 % to −21.11 %). This variability in streamflow is highly correlated with the pattern of precipitation and temperature predicted by CMIP6 GCMs for future emission scenarios and with physical processes operating within the catchment. Predicted declines in the Sutlej River streamflow over the pre-monsoon (April to June) and winter (December to March) seasons might have a significant impact on agriculture downstream of the river, which is already having problems due to water restrictions at this time of year. The present study will therefore assist in strategy planning to ensure the sustainable use of water resources downstream by acquiring knowledge of the nature and causes of unpredictable streamflow patterns." @default.
- W4324257317 created "2023-03-15" @default.
- W4324257317 creator A5001517640 @default.
- W4324257317 creator A5011505344 @default.
- W4324257317 creator A5040146484 @default.
- W4324257317 creator A5060437226 @default.
- W4324257317 creator A5074743382 @default.
- W4324257317 creator A5085823404 @default.
- W4324257317 date "2023-03-13" @default.
- W4324257317 modified "2023-10-16" @default.
- W4324257317 title "Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data" @default.
- W4324257317 cites W1864550036 @default.
- W4324257317 cites W1974048460 @default.
- W4324257317 cites W1978815659 @default.
- W4324257317 cites W1979282872 @default.
- W4324257317 cites W1985479415 @default.
- W4324257317 cites W1985854434 @default.
- W4324257317 cites W1987988199 @default.
- W4324257317 cites W1991008301 @default.
- W4324257317 cites W2000847798 @default.
- W4324257317 cites W2001425590 @default.
- W4324257317 cites W2001991385 @default.
- W4324257317 cites W2008482470 @default.
- W4324257317 cites W2024641642 @default.
- W4324257317 cites W2033904036 @default.
- W4324257317 cites W2037460094 @default.
- W4324257317 cites W2037694633 @default.
- W4324257317 cites W2038244218 @default.
- W4324257317 cites W2046759075 @default.
- W4324257317 cites W2049433045 @default.
- W4324257317 cites W2056737849 @default.
- W4324257317 cites W2058998445 @default.
- W4324257317 cites W2069786602 @default.
- W4324257317 cites W2082359949 @default.
- W4324257317 cites W2090137585 @default.
- W4324257317 cites W2100489519 @default.
- W4324257317 cites W2130544854 @default.
- W4324257317 cites W2137446795 @default.
- W4324257317 cites W2141630770 @default.
- W4324257317 cites W2145635192 @default.
- W4324257317 cites W2145808843 @default.
- W4324257317 cites W2155744142 @default.
- W4324257317 cites W2166186402 @default.
- W4324257317 cites W2167459028 @default.
- W4324257317 cites W2177959459 @default.
- W4324257317 cites W2193890681 @default.
- W4324257317 cites W2328573691 @default.
- W4324257317 cites W2337225114 @default.
- W4324257317 cites W2410390527 @default.
- W4324257317 cites W2471623547 @default.
- W4324257317 cites W2610643335 @default.
- W4324257317 cites W2749545117 @default.
- W4324257317 cites W2765286064 @default.
- W4324257317 cites W2766543159 @default.
- W4324257317 cites W2766575072 @default.
- W4324257317 cites W2791330601 @default.
- W4324257317 cites W2802879587 @default.
- W4324257317 cites W2883655537 @default.
- W4324257317 cites W2886678171 @default.
- W4324257317 cites W2901255489 @default.
- W4324257317 cites W2901865180 @default.
- W4324257317 cites W2912975782 @default.
- W4324257317 cites W2915217480 @default.
- W4324257317 cites W2947773986 @default.
- W4324257317 cites W2973173718 @default.
- W4324257317 cites W2991306453 @default.
- W4324257317 cites W2998268303 @default.
- W4324257317 cites W3007162143 @default.
- W4324257317 cites W3007685425 @default.
- W4324257317 cites W3017246359 @default.
- W4324257317 cites W3027398730 @default.
- W4324257317 cites W3035311842 @default.
- W4324257317 cites W3036420208 @default.
- W4324257317 cites W3037158945 @default.
- W4324257317 cites W3092325799 @default.
- W4324257317 cites W3092962781 @default.
- W4324257317 cites W3096039427 @default.
- W4324257317 cites W3100777112 @default.
- W4324257317 cites W3120322897 @default.
- W4324257317 cites W3132457013 @default.
- W4324257317 cites W3157618649 @default.
- W4324257317 cites W3168656451 @default.
- W4324257317 cites W3177294922 @default.
- W4324257317 cites W3179893104 @default.
- W4324257317 cites W3188236204 @default.
- W4324257317 cites W3194796466 @default.
- W4324257317 cites W3196897376 @default.
- W4324257317 cites W3208827396 @default.
- W4324257317 cites W3212316416 @default.
- W4324257317 cites W4212916462 @default.
- W4324257317 cites W4223926899 @default.
- W4324257317 cites W4224292658 @default.
- W4324257317 cites W4231461627 @default.
- W4324257317 cites W4241973346 @default.
- W4324257317 cites W4293820988 @default.
- W4324257317 cites W4303423372 @default.
- W4324257317 cites W4308488197 @default.
- W4324257317 cites W629204435 @default.