Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324262949> ?p ?o ?g. }
- W4324262949 endingPage "1573" @default.
- W4324262949 startingPage "1573" @default.
- W4324262949 abstract "<ns4:p>There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.</ns4:p><ns4:p> </ns4:p><ns4:p> Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet”) age-related macular degeneration (wet AMD) and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye) and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves). Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.</ns4:p><ns4:p> </ns4:p><ns4:p> This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.</ns4:p><ns4:p> </ns4:p><ns4:p> Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.</ns4:p>" @default.
- W4324262949 created "2023-03-16" @default.
- W4324262949 creator A5018227698 @default.
- W4324262949 creator A5020158673 @default.
- W4324262949 creator A5022377551 @default.
- W4324262949 creator A5025210358 @default.
- W4324262949 creator A5041211864 @default.
- W4324262949 creator A5045981348 @default.
- W4324262949 creator A5046282498 @default.
- W4324262949 creator A5046555167 @default.
- W4324262949 creator A5048050962 @default.
- W4324262949 creator A5051168505 @default.
- W4324262949 creator A5056054539 @default.
- W4324262949 creator A5057195145 @default.
- W4324262949 creator A5057551586 @default.
- W4324262949 creator A5057811717 @default.
- W4324262949 creator A5074881456 @default.
- W4324262949 creator A5078618310 @default.
- W4324262949 date "2017-06-22" @default.
- W4324262949 modified "2023-10-14" @default.
- W4324262949 title "Automated analysis of retinal imaging using machine learning techniques for computer vision" @default.
- W4324262949 cites W1671117615 @default.
- W4324262949 cites W1987770475 @default.
- W4324262949 cites W2029887827 @default.
- W4324262949 cites W2037780881 @default.
- W4324262949 cites W2055068525 @default.
- W4324262949 cites W2101508556 @default.
- W4324262949 cites W2121963763 @default.
- W4324262949 cites W2145339207 @default.
- W4324262949 cites W2156314157 @default.
- W4324262949 cites W2257979135 @default.
- W4324262949 cites W2418802570 @default.
- W4324262949 cites W4211205882 @default.
- W4324262949 doi "https://doi.org/10.12688/f1000research.8996.2" @default.
- W4324262949 hasPublicationYear "2017" @default.
- W4324262949 type Work @default.
- W4324262949 citedByCount "7" @default.
- W4324262949 countsByYear W43242629492018 @default.
- W4324262949 countsByYear W43242629492019 @default.
- W4324262949 countsByYear W43242629492020 @default.
- W4324262949 countsByYear W43242629492021 @default.
- W4324262949 countsByYear W43242629492023 @default.
- W4324262949 crossrefType "journal-article" @default.
- W4324262949 hasAuthorship W4324262949A5018227698 @default.
- W4324262949 hasAuthorship W4324262949A5020158673 @default.
- W4324262949 hasAuthorship W4324262949A5022377551 @default.
- W4324262949 hasAuthorship W4324262949A5025210358 @default.
- W4324262949 hasAuthorship W4324262949A5041211864 @default.
- W4324262949 hasAuthorship W4324262949A5045981348 @default.
- W4324262949 hasAuthorship W4324262949A5046282498 @default.
- W4324262949 hasAuthorship W4324262949A5046555167 @default.
- W4324262949 hasAuthorship W4324262949A5048050962 @default.
- W4324262949 hasAuthorship W4324262949A5051168505 @default.
- W4324262949 hasAuthorship W4324262949A5056054539 @default.
- W4324262949 hasAuthorship W4324262949A5057195145 @default.
- W4324262949 hasAuthorship W4324262949A5057551586 @default.
- W4324262949 hasAuthorship W4324262949A5057811717 @default.
- W4324262949 hasAuthorship W4324262949A5074881456 @default.
- W4324262949 hasAuthorship W4324262949A5078618310 @default.
- W4324262949 hasBestOaLocation W43242629491 @default.
- W4324262949 hasConcept C118487528 @default.
- W4324262949 hasConcept C119767625 @default.
- W4324262949 hasConcept C134018914 @default.
- W4324262949 hasConcept C2776391266 @default.
- W4324262949 hasConcept C2776403814 @default.
- W4324262949 hasConcept C2778818243 @default.
- W4324262949 hasConcept C2779829184 @default.
- W4324262949 hasConcept C2780827179 @default.
- W4324262949 hasConcept C2780929884 @default.
- W4324262949 hasConcept C2908647359 @default.
- W4324262949 hasConcept C555293320 @default.
- W4324262949 hasConcept C71924100 @default.
- W4324262949 hasConcept C99454951 @default.
- W4324262949 hasConceptScore W4324262949C118487528 @default.
- W4324262949 hasConceptScore W4324262949C119767625 @default.
- W4324262949 hasConceptScore W4324262949C134018914 @default.
- W4324262949 hasConceptScore W4324262949C2776391266 @default.
- W4324262949 hasConceptScore W4324262949C2776403814 @default.
- W4324262949 hasConceptScore W4324262949C2778818243 @default.
- W4324262949 hasConceptScore W4324262949C2779829184 @default.
- W4324262949 hasConceptScore W4324262949C2780827179 @default.
- W4324262949 hasConceptScore W4324262949C2780929884 @default.
- W4324262949 hasConceptScore W4324262949C2908647359 @default.
- W4324262949 hasConceptScore W4324262949C555293320 @default.
- W4324262949 hasConceptScore W4324262949C71924100 @default.
- W4324262949 hasConceptScore W4324262949C99454951 @default.
- W4324262949 hasLocation W43242629491 @default.
- W4324262949 hasLocation W43242629492 @default.
- W4324262949 hasLocation W43242629493 @default.
- W4324262949 hasLocation W43242629494 @default.
- W4324262949 hasLocation W43242629495 @default.
- W4324262949 hasLocation W43242629496 @default.
- W4324262949 hasLocation W43242629497 @default.
- W4324262949 hasLocation W43242629498 @default.
- W4324262949 hasOpenAccess W4324262949 @default.
- W4324262949 hasPrimaryLocation W43242629491 @default.
- W4324262949 hasRelatedWork W1582280960 @default.
- W4324262949 hasRelatedWork W2040583314 @default.