Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324264987> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4324264987 endingPage "3044" @default.
- W4324264987 startingPage "3034" @default.
- W4324264987 abstract "Current interferometric wide area ground motion services require the estimation of the coherence magnitude as accurately and computationally effectively as possible. However, a precise and at the same time computationally efficient method is missing. Therefore, the objective of this article is to improve the empirical Bayesian coherence magnitude estimation in terms of accuracy and computational cost. Precisely, this article proposes the interferometric coherence magnitude estimation by Machine Learning (ML). It results in a non-parametric and automated statistical inference. However, applying ML in this estimation context is not straightforward. The number and the domain of possible input processes is infinite and it is not possible to train all possible input signals. It is shown that the expected channel amplitudes and the expected interferometric phase cause redundancies in the input signals allowing to solve this issue. Similar to the empirical Bayesian methods, a single parameter for the maximum underlaying coherence is used to model the prior. However, no prior or any shape of prior probability is easy to implement within the ML framework. The article reports on the bias, the standard deviation and the root mean square error (RMSE) of the developed estimators. It was found that ML estimators improve the coherence estimation RMSE from small samples ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$2 N < 30$</tex-math></inline-formula> ) and for small underlaying coherence compared to the conventional and empirical Bayes estimators. For three interferometric samples ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$N = 3$</tex-math></inline-formula> ) and a zero coherence magnitude, the bias related to the sample estimator improves from 0.53 to 0.39 by 27.8%. Assuming the maximum underlaying coherence is 0.6, the bias is reduced by 33.0% to 0.36 for the less strict and by 45.5% to 0.29 for the strict prior. The developed ML coherence magnitude estimators are suitable and recommended for operational InSAR systems. For the estimation, the ML model is extremely fast evaluated because no iteration, numeric integration or Bootstrapping is needed." @default.
- W4324264987 created "2023-03-16" @default.
- W4324264987 creator A5064077690 @default.
- W4324264987 date "2023-01-01" @default.
- W4324264987 modified "2023-09-30" @default.
- W4324264987 title "Interferometric SAR Coherence Magnitude Estimation by Machine Learning" @default.
- W4324264987 cites W1569980640 @default.
- W4324264987 cites W2047029664 @default.
- W4324264987 cites W2052893527 @default.
- W4324264987 cites W2074319623 @default.
- W4324264987 cites W2106812384 @default.
- W4324264987 cites W2119858996 @default.
- W4324264987 cites W2123632763 @default.
- W4324264987 cites W2124451488 @default.
- W4324264987 cites W2125285579 @default.
- W4324264987 cites W2141414687 @default.
- W4324264987 cites W2143716001 @default.
- W4324264987 cites W2152657318 @default.
- W4324264987 cites W2168381608 @default.
- W4324264987 cites W2580442340 @default.
- W4324264987 cites W2772934236 @default.
- W4324264987 cites W2782522152 @default.
- W4324264987 cites W3037574091 @default.
- W4324264987 cites W3102476541 @default.
- W4324264987 cites W4286377584 @default.
- W4324264987 cites W4312291531 @default.
- W4324264987 doi "https://doi.org/10.1109/jstars.2023.3257047" @default.
- W4324264987 hasPublicationYear "2023" @default.
- W4324264987 type Work @default.
- W4324264987 citedByCount "0" @default.
- W4324264987 crossrefType "journal-article" @default.
- W4324264987 hasAuthorship W4324264987A5064077690 @default.
- W4324264987 hasBestOaLocation W43242649871 @default.
- W4324264987 hasConcept C105795698 @default.
- W4324264987 hasConcept C107673813 @default.
- W4324264987 hasConcept C11413529 @default.
- W4324264987 hasConcept C117251300 @default.
- W4324264987 hasConcept C120665830 @default.
- W4324264987 hasConcept C121332964 @default.
- W4324264987 hasConcept C126691448 @default.
- W4324264987 hasConcept C1276947 @default.
- W4324264987 hasConcept C139945424 @default.
- W4324264987 hasConcept C151730666 @default.
- W4324264987 hasConcept C154945302 @default.
- W4324264987 hasConcept C166689943 @default.
- W4324264987 hasConcept C167928553 @default.
- W4324264987 hasConcept C185429906 @default.
- W4324264987 hasConcept C207201462 @default.
- W4324264987 hasConcept C2779343474 @default.
- W4324264987 hasConcept C2781181686 @default.
- W4324264987 hasConcept C33923547 @default.
- W4324264987 hasConcept C41008148 @default.
- W4324264987 hasConcept C86803240 @default.
- W4324264987 hasConceptScore W4324264987C105795698 @default.
- W4324264987 hasConceptScore W4324264987C107673813 @default.
- W4324264987 hasConceptScore W4324264987C11413529 @default.
- W4324264987 hasConceptScore W4324264987C117251300 @default.
- W4324264987 hasConceptScore W4324264987C120665830 @default.
- W4324264987 hasConceptScore W4324264987C121332964 @default.
- W4324264987 hasConceptScore W4324264987C126691448 @default.
- W4324264987 hasConceptScore W4324264987C1276947 @default.
- W4324264987 hasConceptScore W4324264987C139945424 @default.
- W4324264987 hasConceptScore W4324264987C151730666 @default.
- W4324264987 hasConceptScore W4324264987C154945302 @default.
- W4324264987 hasConceptScore W4324264987C166689943 @default.
- W4324264987 hasConceptScore W4324264987C167928553 @default.
- W4324264987 hasConceptScore W4324264987C185429906 @default.
- W4324264987 hasConceptScore W4324264987C207201462 @default.
- W4324264987 hasConceptScore W4324264987C2779343474 @default.
- W4324264987 hasConceptScore W4324264987C2781181686 @default.
- W4324264987 hasConceptScore W4324264987C33923547 @default.
- W4324264987 hasConceptScore W4324264987C41008148 @default.
- W4324264987 hasConceptScore W4324264987C86803240 @default.
- W4324264987 hasLocation W43242649871 @default.
- W4324264987 hasLocation W43242649872 @default.
- W4324264987 hasOpenAccess W4324264987 @default.
- W4324264987 hasPrimaryLocation W43242649871 @default.
- W4324264987 hasRelatedWork W106751956 @default.
- W4324264987 hasRelatedWork W148593058 @default.
- W4324264987 hasRelatedWork W2106362003 @default.
- W4324264987 hasRelatedWork W2167006297 @default.
- W4324264987 hasRelatedWork W2187942274 @default.
- W4324264987 hasRelatedWork W2464015051 @default.
- W4324264987 hasRelatedWork W2521753262 @default.
- W4324264987 hasRelatedWork W2582182730 @default.
- W4324264987 hasRelatedWork W2907746047 @default.
- W4324264987 hasRelatedWork W3124567442 @default.
- W4324264987 hasVolume "16" @default.
- W4324264987 isParatext "false" @default.
- W4324264987 isRetracted "false" @default.
- W4324264987 workType "article" @default.