Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324284306> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4324284306 endingPage "733" @default.
- W4324284306 startingPage "719" @default.
- W4324284306 abstract "Employing individuals via the Internet has been a boon for businesses in the modern day. It is much simpler and more convenient than traditional recruitment methods. However, several scammers are abusing this platform, which may result in financial and privacy loss for job seekers and damage to the reputable organisation's name. In this research, we proposed a technique for detecting Online Recruitment Fraud (ORF). This model uses a publicly available dataset containing 17,780 job postings. We apply the four classification models to determine which classification model performs best for our suggested model. In this model, we use decision trees, random forests, Naive Bayes and logistic regression methods. We have estimated and evaluated the accuracy of several prediction systems. The random forest classifier provides the greatest accuracy, 97.16%, on our dataset. We have endeavoured to develop a method for detecting bogus recruiting postings." @default.
- W4324284306 created "2023-03-16" @default.
- W4324284306 creator A5030334397 @default.
- W4324284306 creator A5059424027 @default.
- W4324284306 creator A5061366695 @default.
- W4324284306 creator A5062359327 @default.
- W4324284306 creator A5085822650 @default.
- W4324284306 date "2023-01-01" @default.
- W4324284306 modified "2023-10-03" @default.
- W4324284306 title "Predicting Online Job Recruitment Fraudulent Using Machine Learning" @default.
- W4324284306 cites W1518922009 @default.
- W4324284306 cites W2041597619 @default.
- W4324284306 cites W2097579905 @default.
- W4324284306 cites W2157900417 @default.
- W4324284306 cites W2303655587 @default.
- W4324284306 cites W2593459944 @default.
- W4324284306 cites W2807901135 @default.
- W4324284306 cites W2852300932 @default.
- W4324284306 cites W2921297172 @default.
- W4324284306 cites W2949836779 @default.
- W4324284306 cites W2974091181 @default.
- W4324284306 cites W327991062 @default.
- W4324284306 doi "https://doi.org/10.1007/978-981-19-7753-4_55" @default.
- W4324284306 hasPublicationYear "2023" @default.
- W4324284306 type Work @default.
- W4324284306 citedByCount "1" @default.
- W4324284306 countsByYear W43242843062023 @default.
- W4324284306 crossrefType "book-chapter" @default.
- W4324284306 hasAuthorship W4324284306A5030334397 @default.
- W4324284306 hasAuthorship W4324284306A5059424027 @default.
- W4324284306 hasAuthorship W4324284306A5061366695 @default.
- W4324284306 hasAuthorship W4324284306A5062359327 @default.
- W4324284306 hasAuthorship W4324284306A5085822650 @default.
- W4324284306 hasConcept C110875604 @default.
- W4324284306 hasConcept C119857082 @default.
- W4324284306 hasConcept C12267149 @default.
- W4324284306 hasConcept C124101348 @default.
- W4324284306 hasConcept C136764020 @default.
- W4324284306 hasConcept C151956035 @default.
- W4324284306 hasConcept C154945302 @default.
- W4324284306 hasConcept C169258074 @default.
- W4324284306 hasConcept C17744445 @default.
- W4324284306 hasConcept C199539241 @default.
- W4324284306 hasConcept C2776493517 @default.
- W4324284306 hasConcept C41008148 @default.
- W4324284306 hasConcept C52001869 @default.
- W4324284306 hasConcept C84525736 @default.
- W4324284306 hasConcept C95623464 @default.
- W4324284306 hasConceptScore W4324284306C110875604 @default.
- W4324284306 hasConceptScore W4324284306C119857082 @default.
- W4324284306 hasConceptScore W4324284306C12267149 @default.
- W4324284306 hasConceptScore W4324284306C124101348 @default.
- W4324284306 hasConceptScore W4324284306C136764020 @default.
- W4324284306 hasConceptScore W4324284306C151956035 @default.
- W4324284306 hasConceptScore W4324284306C154945302 @default.
- W4324284306 hasConceptScore W4324284306C169258074 @default.
- W4324284306 hasConceptScore W4324284306C17744445 @default.
- W4324284306 hasConceptScore W4324284306C199539241 @default.
- W4324284306 hasConceptScore W4324284306C2776493517 @default.
- W4324284306 hasConceptScore W4324284306C41008148 @default.
- W4324284306 hasConceptScore W4324284306C52001869 @default.
- W4324284306 hasConceptScore W4324284306C84525736 @default.
- W4324284306 hasConceptScore W4324284306C95623464 @default.
- W4324284306 hasLocation W43242843061 @default.
- W4324284306 hasOpenAccess W4324284306 @default.
- W4324284306 hasPrimaryLocation W43242843061 @default.
- W4324284306 hasRelatedWork W3013497550 @default.
- W4324284306 hasRelatedWork W4214951795 @default.
- W4324284306 hasRelatedWork W4281846282 @default.
- W4324284306 hasRelatedWork W4321636153 @default.
- W4324284306 hasRelatedWork W4367335893 @default.
- W4324284306 hasRelatedWork W4377964522 @default.
- W4324284306 hasRelatedWork W4383535405 @default.
- W4324284306 hasRelatedWork W4383746529 @default.
- W4324284306 hasRelatedWork W4384345534 @default.
- W4324284306 hasRelatedWork W4384520063 @default.
- W4324284306 isParatext "false" @default.
- W4324284306 isRetracted "false" @default.
- W4324284306 workType "book-chapter" @default.