Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324291210> ?p ?o ?g. }
- W4324291210 endingPage "2449" @default.
- W4324291210 startingPage "2439" @default.
- W4324291210 abstract "This paper proposes a special-purpose system to achieve high-accuracy and high-efficiency machine learning (ML) molecular dynamics (MD) calculations. The system consists of field programmable gate array (FPGA) and application specific integrated circuit (ASIC) working in heterogeneous parallelization. To be specific, a multiplication-less neural network (NN) is deployed on the non-von Neumann (NvN)-based ASIC (SilTerra 180 nm process) to evaluate atomic forces, which is the most computationally expensive part of MD. All other calculations of MD are done using FPGA (Xilinx XC7Z100). It is shown that, to achieve similar-level accuracy, the proposed NvN-based system based on low-end fabrication technologies (180 nm) is <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$1.6times $ </tex-math></inline-formula> faster and <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$10^{2}$ </tex-math></inline-formula> - <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$10^{3}times $ </tex-math></inline-formula> more energy efficiency than state-of-the-art vN-based MLMD using graphics processing units (GPUs) based on much more advanced technologies (12 nm), indicating superiority of the proposed NvN-based heterogeneous parallel architecture." @default.
- W4324291210 created "2023-03-16" @default.
- W4324291210 creator A5011370924 @default.
- W4324291210 creator A5017623848 @default.
- W4324291210 creator A5038597752 @default.
- W4324291210 creator A5046261830 @default.
- W4324291210 creator A5057674674 @default.
- W4324291210 creator A5060210431 @default.
- W4324291210 creator A5068179016 @default.
- W4324291210 creator A5069374534 @default.
- W4324291210 date "2023-06-01" @default.
- W4324291210 modified "2023-10-14" @default.
- W4324291210 title "A Heterogeneous Parallel Non-von Neumann Architecture System for Accurate and Efficient Machine Learning Molecular Dynamics" @default.
- W4324291210 cites W1977850862 @default.
- W4324291210 cites W1981368803 @default.
- W4324291210 cites W1982981463 @default.
- W4324291210 cites W2024642288 @default.
- W4324291210 cites W2025444507 @default.
- W4324291210 cites W2027109368 @default.
- W4324291210 cites W2028263411 @default.
- W4324291210 cites W2046001409 @default.
- W4324291210 cites W2051381895 @default.
- W4324291210 cites W2082912027 @default.
- W4324291210 cites W2117489143 @default.
- W4324291210 cites W2137983211 @default.
- W4324291210 cites W2141704677 @default.
- W4324291210 cites W2147993766 @default.
- W4324291210 cites W2163189992 @default.
- W4324291210 cites W2165640958 @default.
- W4324291210 cites W2230728100 @default.
- W4324291210 cites W2278628055 @default.
- W4324291210 cites W2566642125 @default.
- W4324291210 cites W2742127985 @default.
- W4324291210 cites W2767215064 @default.
- W4324291210 cites W2775708988 @default.
- W4324291210 cites W2793950911 @default.
- W4324291210 cites W2795584281 @default.
- W4324291210 cites W2920282898 @default.
- W4324291210 cites W2963844898 @default.
- W4324291210 cites W2999264715 @default.
- W4324291210 cites W3004457120 @default.
- W4324291210 cites W3005262551 @default.
- W4324291210 cites W3005892601 @default.
- W4324291210 cites W3014178136 @default.
- W4324291210 cites W3034344052 @default.
- W4324291210 cites W3047171309 @default.
- W4324291210 cites W3103689700 @default.
- W4324291210 cites W3132277775 @default.
- W4324291210 cites W3209739359 @default.
- W4324291210 cites W4229370543 @default.
- W4324291210 cites W4292169167 @default.
- W4324291210 doi "https://doi.org/10.1109/tcsi.2023.3255199" @default.
- W4324291210 hasPublicationYear "2023" @default.
- W4324291210 type Work @default.
- W4324291210 citedByCount "0" @default.
- W4324291210 crossrefType "journal-article" @default.
- W4324291210 hasAuthorship W4324291210A5011370924 @default.
- W4324291210 hasAuthorship W4324291210A5017623848 @default.
- W4324291210 hasAuthorship W4324291210A5038597752 @default.
- W4324291210 hasAuthorship W4324291210A5046261830 @default.
- W4324291210 hasAuthorship W4324291210A5057674674 @default.
- W4324291210 hasAuthorship W4324291210A5060210431 @default.
- W4324291210 hasAuthorship W4324291210A5068179016 @default.
- W4324291210 hasAuthorship W4324291210A5069374534 @default.
- W4324291210 hasBestOaLocation W43242912102 @default.
- W4324291210 hasConcept C173608175 @default.
- W4324291210 hasConcept C199360897 @default.
- W4324291210 hasConcept C33923547 @default.
- W4324291210 hasConcept C41008148 @default.
- W4324291210 hasConcept C42935608 @default.
- W4324291210 hasConcept C45357846 @default.
- W4324291210 hasConcept C77390884 @default.
- W4324291210 hasConcept C80469333 @default.
- W4324291210 hasConcept C9390403 @default.
- W4324291210 hasConcept C94375191 @default.
- W4324291210 hasConceptScore W4324291210C173608175 @default.
- W4324291210 hasConceptScore W4324291210C199360897 @default.
- W4324291210 hasConceptScore W4324291210C33923547 @default.
- W4324291210 hasConceptScore W4324291210C41008148 @default.
- W4324291210 hasConceptScore W4324291210C42935608 @default.
- W4324291210 hasConceptScore W4324291210C45357846 @default.
- W4324291210 hasConceptScore W4324291210C77390884 @default.
- W4324291210 hasConceptScore W4324291210C80469333 @default.
- W4324291210 hasConceptScore W4324291210C9390403 @default.
- W4324291210 hasConceptScore W4324291210C94375191 @default.
- W4324291210 hasFunder F4320321001 @default.
- W4324291210 hasFunder F4320330214 @default.
- W4324291210 hasFunder F4320335787 @default.
- W4324291210 hasIssue "6" @default.
- W4324291210 hasLocation W43242912101 @default.
- W4324291210 hasLocation W43242912102 @default.
- W4324291210 hasOpenAccess W4324291210 @default.
- W4324291210 hasPrimaryLocation W43242912101 @default.
- W4324291210 hasRelatedWork W1485756991 @default.
- W4324291210 hasRelatedWork W1998406679 @default.
- W4324291210 hasRelatedWork W2029655296 @default.
- W4324291210 hasRelatedWork W2037481744 @default.
- W4324291210 hasRelatedWork W2356927082 @default.