Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324291216> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4324291216 endingPage "115" @default.
- W4324291216 startingPage "103" @default.
- W4324291216 abstract "Most attention has been paid to chest Computed Tomography (CT) in this burgeoning crisis because many cases of COVID-19 demonstrate respiratory illness clinically resembling viral pneumonia which persists in prominent visual signatures on high-resolution CT befitting of viruses that damage lungs. However, CT is very expensive, time-consuming, and inaccessible in remote hospitals. As an important complement, this research proposes a novel kNN-regularized Support Vector Machine (kNN-SVM) algorithm for identifying COVID-induced pneumonia from inexpensive and simple frontal chest X-ray (CXR). To compute the deep features, we used transfer learning on the standard VGG16 model. Then the autoencoder algorithm is used for dimensionality reduction. Finally, a novel kNN-regularized Support Vector Machine algorithm is developed and implemented which can successfully classify the three classes: Normal, Pneumonia, and COVID-19 on a benchmark chest X-ray dataset. kNN-SVM combines the properties of two well-known formalisms: k-Nearest Neighbors (kNN) and Support Vector Machines (SVMs). Our approach extends the total-margin SVM, which considers the distance of all points from the margin; each point is weighted based on its k nearest neighbors. The intuition is that examples that are mostly surrounded by similar neighbors, i.e., of their own class, are given more priority to minimize the influence of drastic outliers and improve generalization and robustness. Thus, our approach combines the local sensitivity of kNN with the global stability of the total-margin SVM. Extensive experimental results demonstrate that the proposed kNN-SVM can detect COVID-19-induced pneumonia from chest X-ray with greater or comparable accuracy relative to human radiologists." @default.
- W4324291216 created "2023-03-16" @default.
- W4324291216 creator A5004053411 @default.
- W4324291216 creator A5034339450 @default.
- W4324291216 creator A5035754194 @default.
- W4324291216 creator A5049131672 @default.
- W4324291216 date "2022-01-01" @default.
- W4324291216 modified "2023-09-29" @default.
- W4324291216 title "kNN-SVM with Deep Features for COVID-19 Pneumonia Detection from Chest X-ray" @default.
- W4324291216 cites W1596717185 @default.
- W4324291216 cites W203437397 @default.
- W4324291216 cites W2038221881 @default.
- W4324291216 cites W2046384674 @default.
- W4324291216 cites W2091632079 @default.
- W4324291216 cites W2108598243 @default.
- W4324291216 cites W2122111042 @default.
- W4324291216 cites W2165180486 @default.
- W4324291216 cites W2177066871 @default.
- W4324291216 cites W22012095 @default.
- W4324291216 cites W2429914308 @default.
- W4324291216 cites W2787894218 @default.
- W4324291216 cites W3006882119 @default.
- W4324291216 cites W3013601031 @default.
- W4324291216 cites W3017855299 @default.
- W4324291216 cites W3024801014 @default.
- W4324291216 cites W3025948831 @default.
- W4324291216 cites W3030621456 @default.
- W4324291216 cites W3036552116 @default.
- W4324291216 cites W3041160213 @default.
- W4324291216 cites W3041947321 @default.
- W4324291216 cites W3107979957 @default.
- W4324291216 cites W3109349638 @default.
- W4324291216 cites W3140022118 @default.
- W4324291216 doi "https://doi.org/10.1007/978-981-19-9307-7_9" @default.
- W4324291216 hasPublicationYear "2022" @default.
- W4324291216 type Work @default.
- W4324291216 citedByCount "0" @default.
- W4324291216 crossrefType "book-chapter" @default.
- W4324291216 hasAuthorship W4324291216A5004053411 @default.
- W4324291216 hasAuthorship W4324291216A5034339450 @default.
- W4324291216 hasAuthorship W4324291216A5035754194 @default.
- W4324291216 hasAuthorship W4324291216A5049131672 @default.
- W4324291216 hasConcept C113238511 @default.
- W4324291216 hasConcept C11413529 @default.
- W4324291216 hasConcept C119857082 @default.
- W4324291216 hasConcept C12267149 @default.
- W4324291216 hasConcept C142724271 @default.
- W4324291216 hasConcept C153180895 @default.
- W4324291216 hasConcept C154945302 @default.
- W4324291216 hasConcept C2779134260 @default.
- W4324291216 hasConcept C3008058167 @default.
- W4324291216 hasConcept C41008148 @default.
- W4324291216 hasConcept C524204448 @default.
- W4324291216 hasConcept C71924100 @default.
- W4324291216 hasConcept C774472 @default.
- W4324291216 hasConceptScore W4324291216C113238511 @default.
- W4324291216 hasConceptScore W4324291216C11413529 @default.
- W4324291216 hasConceptScore W4324291216C119857082 @default.
- W4324291216 hasConceptScore W4324291216C12267149 @default.
- W4324291216 hasConceptScore W4324291216C142724271 @default.
- W4324291216 hasConceptScore W4324291216C153180895 @default.
- W4324291216 hasConceptScore W4324291216C154945302 @default.
- W4324291216 hasConceptScore W4324291216C2779134260 @default.
- W4324291216 hasConceptScore W4324291216C3008058167 @default.
- W4324291216 hasConceptScore W4324291216C41008148 @default.
- W4324291216 hasConceptScore W4324291216C524204448 @default.
- W4324291216 hasConceptScore W4324291216C71924100 @default.
- W4324291216 hasConceptScore W4324291216C774472 @default.
- W4324291216 hasLocation W43242912161 @default.
- W4324291216 hasOpenAccess W4324291216 @default.
- W4324291216 hasPrimaryLocation W43242912161 @default.
- W4324291216 hasRelatedWork W2041399278 @default.
- W4324291216 hasRelatedWork W2099369243 @default.
- W4324291216 hasRelatedWork W2120008580 @default.
- W4324291216 hasRelatedWork W2126100045 @default.
- W4324291216 hasRelatedWork W2136184105 @default.
- W4324291216 hasRelatedWork W2340694410 @default.
- W4324291216 hasRelatedWork W3194539120 @default.
- W4324291216 hasRelatedWork W4205958290 @default.
- W4324291216 hasRelatedWork W4223656335 @default.
- W4324291216 hasRelatedWork W2345184372 @default.
- W4324291216 isParatext "false" @default.
- W4324291216 isRetracted "false" @default.
- W4324291216 workType "book-chapter" @default.