Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324334443> ?p ?o ?g. }
- W4324334443 endingPage "25" @default.
- W4324334443 startingPage "16" @default.
- W4324334443 abstract "Biomarker-based tests may facilitate Tuberculosis (TB) diagnosis, accelerate treatment initiation, and thus improve outcomes. This review synthesizes the literature on biomarker-based detection for TB diagnosis using machine learning. The systematic review approach follows the PRISMA guideline. Articles were sought using relevant keywords from Web of Science, PubMed, and Scopus, resulting in 19 eligible studies after a meticulous screening. All the studies were found to have focused on the supervised learning approach, with Support Vector Machine (SVM) and Random Forest emerging as the top two algorithms, with the highest accuracy, sensitivity and specificity reported to be 97.0%, 99.2%, and 98.0%, respectively. Further, protein-based biomarkers were widely explored, followed by gene-based such as RNA sequence and, Spoligotypes. Publicly available datasets were observed to be popularly used by the studies reviewed whilst studies targeting specific cohorts such as HIV patients or children gathering their own data from healthcare facilities, leading to smaller datasets. Of these, most studies used the leave one out cross validation technique to mitigate overfitting. The review shows that machine learning is increasingly assessed in research to improve TB diagnosis through biomarkers, as promising results were shown in terms of model's detection performance. This provides insights on the possible application of machine learning approaches to diagnose TB using biomarkers as opposed to the traditional methods that can be time consuming. Low-middle income settings, where access to basic biomarkers could be provided as compared to sputum-based tests that are not always available, could be a major application of such models." @default.
- W4324334443 created "2023-03-16" @default.
- W4324334443 creator A5039836783 @default.
- W4324334443 creator A5041573811 @default.
- W4324334443 creator A5054075764 @default.
- W4324334443 creator A5061174350 @default.
- W4324334443 creator A5088840419 @default.
- W4324334443 date "2023-05-01" @default.
- W4324334443 modified "2023-09-23" @default.
- W4324334443 title "Machine learning approaches in diagnosing tuberculosis through biomarkers - A systematic review" @default.
- W4324334443 cites W2123266729 @default.
- W4324334443 cites W2124875533 @default.
- W4324334443 cites W2128601422 @default.
- W4324334443 cites W2172000360 @default.
- W4324334443 cites W2528502090 @default.
- W4324334443 cites W2550228307 @default.
- W4324334443 cites W2584459565 @default.
- W4324334443 cites W2792213513 @default.
- W4324334443 cites W2792725962 @default.
- W4324334443 cites W2795307638 @default.
- W4324334443 cites W2810064589 @default.
- W4324334443 cites W2891044238 @default.
- W4324334443 cites W2900435342 @default.
- W4324334443 cites W2962027787 @default.
- W4324334443 cites W2981742464 @default.
- W4324334443 cites W2990632791 @default.
- W4324334443 cites W3002900120 @default.
- W4324334443 cites W3025161810 @default.
- W4324334443 cites W3042820931 @default.
- W4324334443 cites W3048529821 @default.
- W4324334443 cites W3095676345 @default.
- W4324334443 cites W3098350347 @default.
- W4324334443 cites W3126728228 @default.
- W4324334443 cites W3130362729 @default.
- W4324334443 cites W3143447745 @default.
- W4324334443 cites W3184338512 @default.
- W4324334443 cites W3189041949 @default.
- W4324334443 cites W3194604363 @default.
- W4324334443 cites W3194982939 @default.
- W4324334443 cites W3206887336 @default.
- W4324334443 cites W3209669209 @default.
- W4324334443 cites W4200209340 @default.
- W4324334443 cites W4212979791 @default.
- W4324334443 cites W4220665606 @default.
- W4324334443 cites W4221015709 @default.
- W4324334443 cites W4256377019 @default.
- W4324334443 cites W4293036568 @default.
- W4324334443 cites W4303699258 @default.
- W4324334443 cites W4307770890 @default.
- W4324334443 doi "https://doi.org/10.1016/j.pbiomolbio.2023.03.001" @default.
- W4324334443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36931609" @default.
- W4324334443 hasPublicationYear "2023" @default.
- W4324334443 type Work @default.
- W4324334443 citedByCount "3" @default.
- W4324334443 countsByYear W43243344432023 @default.
- W4324334443 crossrefType "journal-article" @default.
- W4324334443 hasAuthorship W4324334443A5039836783 @default.
- W4324334443 hasAuthorship W4324334443A5041573811 @default.
- W4324334443 hasAuthorship W4324334443A5054075764 @default.
- W4324334443 hasAuthorship W4324334443A5061174350 @default.
- W4324334443 hasAuthorship W4324334443A5088840419 @default.
- W4324334443 hasConcept C119857082 @default.
- W4324334443 hasConcept C12267149 @default.
- W4324334443 hasConcept C154945302 @default.
- W4324334443 hasConcept C169258074 @default.
- W4324334443 hasConcept C189708586 @default.
- W4324334443 hasConcept C22019652 @default.
- W4324334443 hasConcept C2779473830 @default.
- W4324334443 hasConcept C2781197716 @default.
- W4324334443 hasConcept C41008148 @default.
- W4324334443 hasConcept C50644808 @default.
- W4324334443 hasConcept C55493867 @default.
- W4324334443 hasConcept C71924100 @default.
- W4324334443 hasConcept C86803240 @default.
- W4324334443 hasConceptScore W4324334443C119857082 @default.
- W4324334443 hasConceptScore W4324334443C12267149 @default.
- W4324334443 hasConceptScore W4324334443C154945302 @default.
- W4324334443 hasConceptScore W4324334443C169258074 @default.
- W4324334443 hasConceptScore W4324334443C189708586 @default.
- W4324334443 hasConceptScore W4324334443C22019652 @default.
- W4324334443 hasConceptScore W4324334443C2779473830 @default.
- W4324334443 hasConceptScore W4324334443C2781197716 @default.
- W4324334443 hasConceptScore W4324334443C41008148 @default.
- W4324334443 hasConceptScore W4324334443C50644808 @default.
- W4324334443 hasConceptScore W4324334443C55493867 @default.
- W4324334443 hasConceptScore W4324334443C71924100 @default.
- W4324334443 hasConceptScore W4324334443C86803240 @default.
- W4324334443 hasLocation W43243344431 @default.
- W4324334443 hasLocation W43243344432 @default.
- W4324334443 hasOpenAccess W4324334443 @default.
- W4324334443 hasPrimaryLocation W43243344431 @default.
- W4324334443 hasRelatedWork W1996541855 @default.
- W4324334443 hasRelatedWork W2989932438 @default.
- W4324334443 hasRelatedWork W3099765033 @default.
- W4324334443 hasRelatedWork W3195168932 @default.
- W4324334443 hasRelatedWork W4200101202 @default.
- W4324334443 hasRelatedWork W4210794429 @default.
- W4324334443 hasRelatedWork W4321636153 @default.