Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324351618> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4324351618 endingPage "107765" @default.
- W4324351618 startingPage "107765" @default.
- W4324351618 abstract "Flower thinning at the most appropriate stage could achieve high and stable yield of apple. Achieving the accurate and real-time detection of apple flowers can provide necessary technical support for the vision system of thinning robots. An apple flower detection method based on lightweight YOLOv5s algorithm was proposed. The original Backbone of YOLOv5s was replaced by ShuffleNetv2, and the Conv module of the Neck part of YOLOv5s network was replaced by Ghost module. ShuffleNetv2 reduced the memory access cost through Channel Split operation. Ghost module reduced the computing cost of the general volume layer while maintaining the similar detection performance. The combination of these two methods in the improvement of YOLOv5s network can greatly reduce the size of the model and improve the detection speed, which was convenient for the migration and application of the model. To verify the effectiveness of the model, 3005 apple flower images in different environments were used for training and testing. The Precision, Recall, and mean Average Precision (mAP) of YOLOv5s-ShuffleNetv2-Ghost model were 88.40 %, 86.10 %, and 91.80 %, respectively, the model size was only 0.61 MB, and the detection speed was 86.21 fps. The detection speed of YOLOv5s-ShuffleNetv2-Ghost model on the Jetson nano B01 development board was 2.48 fps. The results showed that the method was feasible for real-time and accurate detection of apple flowers. The research can provide technical reference for the development of orchard flower thinning robots." @default.
- W4324351618 created "2023-03-16" @default.
- W4324351618 creator A5025874012 @default.
- W4324351618 creator A5047079283 @default.
- W4324351618 creator A5052267876 @default.
- W4324351618 creator A5054668328 @default.
- W4324351618 creator A5087909985 @default.
- W4324351618 creator A5088438669 @default.
- W4324351618 date "2023-04-01" @default.
- W4324351618 modified "2023-10-05" @default.
- W4324351618 title "Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments" @default.
- W4324351618 cites W1490649814 @default.
- W4324351618 cites W1609392444 @default.
- W4324351618 cites W2340513877 @default.
- W4324351618 cites W2790979755 @default.
- W4324351618 cites W2794915299 @default.
- W4324351618 cites W2909494862 @default.
- W4324351618 cites W2951258052 @default.
- W4324351618 cites W2969769846 @default.
- W4324351618 cites W2981503346 @default.
- W4324351618 cites W3001083904 @default.
- W4324351618 cites W3013222095 @default.
- W4324351618 cites W3082283798 @default.
- W4324351618 cites W3085201316 @default.
- W4324351618 cites W3130429917 @default.
- W4324351618 cites W3152088004 @default.
- W4324351618 cites W3158114921 @default.
- W4324351618 cites W3159149035 @default.
- W4324351618 cites W3199427309 @default.
- W4324351618 cites W3200126418 @default.
- W4324351618 cites W3202964170 @default.
- W4324351618 cites W3212509199 @default.
- W4324351618 cites W3213810615 @default.
- W4324351618 cites W3216361804 @default.
- W4324351618 cites W4210598935 @default.
- W4324351618 cites W4210600383 @default.
- W4324351618 cites W4210741732 @default.
- W4324351618 cites W4281623514 @default.
- W4324351618 cites W4281640767 @default.
- W4324351618 cites W4288801255 @default.
- W4324351618 cites W4386076325 @default.
- W4324351618 doi "https://doi.org/10.1016/j.compag.2023.107765" @default.
- W4324351618 hasPublicationYear "2023" @default.
- W4324351618 type Work @default.
- W4324351618 citedByCount "6" @default.
- W4324351618 countsByYear W43243516182023 @default.
- W4324351618 crossrefType "journal-article" @default.
- W4324351618 hasAuthorship W4324351618A5025874012 @default.
- W4324351618 hasAuthorship W4324351618A5047079283 @default.
- W4324351618 hasAuthorship W4324351618A5052267876 @default.
- W4324351618 hasAuthorship W4324351618A5054668328 @default.
- W4324351618 hasAuthorship W4324351618A5087909985 @default.
- W4324351618 hasAuthorship W4324351618A5088438669 @default.
- W4324351618 hasConcept C11413529 @default.
- W4324351618 hasConcept C144027150 @default.
- W4324351618 hasConcept C154945302 @default.
- W4324351618 hasConcept C18903297 @default.
- W4324351618 hasConcept C2780753983 @default.
- W4324351618 hasConcept C2781353100 @default.
- W4324351618 hasConcept C41008148 @default.
- W4324351618 hasConcept C86803240 @default.
- W4324351618 hasConcept C90509273 @default.
- W4324351618 hasConceptScore W4324351618C11413529 @default.
- W4324351618 hasConceptScore W4324351618C144027150 @default.
- W4324351618 hasConceptScore W4324351618C154945302 @default.
- W4324351618 hasConceptScore W4324351618C18903297 @default.
- W4324351618 hasConceptScore W4324351618C2780753983 @default.
- W4324351618 hasConceptScore W4324351618C2781353100 @default.
- W4324351618 hasConceptScore W4324351618C41008148 @default.
- W4324351618 hasConceptScore W4324351618C86803240 @default.
- W4324351618 hasConceptScore W4324351618C90509273 @default.
- W4324351618 hasFunder F4320321001 @default.
- W4324351618 hasFunder F4320335777 @default.
- W4324351618 hasLocation W43243516181 @default.
- W4324351618 hasOpenAccess W4324351618 @default.
- W4324351618 hasPrimaryLocation W43243516181 @default.
- W4324351618 hasRelatedWork W1573752787 @default.
- W4324351618 hasRelatedWork W2072657584 @default.
- W4324351618 hasRelatedWork W2337991629 @default.
- W4324351618 hasRelatedWork W2350998906 @default.
- W4324351618 hasRelatedWork W2357280244 @default.
- W4324351618 hasRelatedWork W2375223689 @default.
- W4324351618 hasRelatedWork W2989655533 @default.
- W4324351618 hasRelatedWork W4247499642 @default.
- W4324351618 hasRelatedWork W4283836740 @default.
- W4324351618 hasRelatedWork W2254626072 @default.
- W4324351618 hasVolume "207" @default.
- W4324351618 isParatext "false" @default.
- W4324351618 isRetracted "false" @default.
- W4324351618 workType "article" @default.