Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324355013> ?p ?o ?g. }
- W4324355013 endingPage "19723" @default.
- W4324355013 startingPage "19708" @default.
- W4324355013 abstract "Deep learning has been widely considered in medical image segmentation. However, the difficulty of acquiring medical images and labels can affect the accuracy of the segmentation results for deep learning methods. In this paper, an automatic segmentation method is proposed by devising a multicomponent neighborhood extreme learning machine to improve the boundary attention region of the preliminary segmentation results. The neighborhood features are acquired by training U-Nets with the multicomponent small dataset, which consists of original thyroid ultrasound images, Sobel edge images and superpixel images. Afterward, the neighborhood features are selected by min-redundancy and max-relevance filter in the designed extreme learning machine, and the selected features are used to train the extreme learning machine to obtain supplementary segmentation results. Finally, the accuracy of the segmentation results is improved by adjusting the boundary attention region of the preliminary segmentation results with the supplementary segmentation results. This method combines the advantages of deep learning and traditional machine learning, boosting the accuracy of thyroid segmentation accuracy with a small dataset in a multigroup test." @default.
- W4324355013 created "2023-03-16" @default.
- W4324355013 creator A5003591630 @default.
- W4324355013 creator A5018814025 @default.
- W4324355013 creator A5038768564 @default.
- W4324355013 creator A5039266973 @default.
- W4324355013 creator A5068665155 @default.
- W4324355013 creator A5075736599 @default.
- W4324355013 creator A5082156574 @default.
- W4324355013 creator A5084291346 @default.
- W4324355013 date "2023-03-15" @default.
- W4324355013 modified "2023-09-30" @default.
- W4324355013 title "Automatic segmentation of thyroid with the assistance of the devised boundary improvement based on multicomponent small dataset" @default.
- W4324355013 cites W1519102814 @default.
- W4324355013 cites W1901129140 @default.
- W4324355013 cites W1978560444 @default.
- W4324355013 cites W2057994991 @default.
- W4324355013 cites W2113275954 @default.
- W4324355013 cites W2132896411 @default.
- W4324355013 cites W2395611524 @default.
- W4324355013 cites W2602848949 @default.
- W4324355013 cites W2730698429 @default.
- W4324355013 cites W2746841293 @default.
- W4324355013 cites W2794284562 @default.
- W4324355013 cites W2903627935 @default.
- W4324355013 cites W2913559493 @default.
- W4324355013 cites W2916254414 @default.
- W4324355013 cites W2944384243 @default.
- W4324355013 cites W2945970107 @default.
- W4324355013 cites W2955084925 @default.
- W4324355013 cites W2960092041 @default.
- W4324355013 cites W2963220672 @default.
- W4324355013 cites W2963881378 @default.
- W4324355013 cites W2966196015 @default.
- W4324355013 cites W2990280407 @default.
- W4324355013 cites W2995921265 @default.
- W4324355013 cites W3002592716 @default.
- W4324355013 cites W3039320642 @default.
- W4324355013 cites W3040425739 @default.
- W4324355013 cites W3089516294 @default.
- W4324355013 cites W3091181977 @default.
- W4324355013 cites W3096947210 @default.
- W4324355013 cites W3111852437 @default.
- W4324355013 cites W3112175976 @default.
- W4324355013 cites W3129232084 @default.
- W4324355013 cites W3136295759 @default.
- W4324355013 cites W3155361587 @default.
- W4324355013 cites W3157211298 @default.
- W4324355013 cites W3160628992 @default.
- W4324355013 cites W3165254547 @default.
- W4324355013 cites W3172317317 @default.
- W4324355013 cites W3181828282 @default.
- W4324355013 cites W3192018998 @default.
- W4324355013 cites W3202424564 @default.
- W4324355013 cites W3204202245 @default.
- W4324355013 cites W4200082766 @default.
- W4324355013 doi "https://doi.org/10.1007/s10489-023-04540-5" @default.
- W4324355013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37363389" @default.
- W4324355013 hasPublicationYear "2023" @default.
- W4324355013 type Work @default.
- W4324355013 citedByCount "0" @default.
- W4324355013 crossrefType "journal-article" @default.
- W4324355013 hasAuthorship W4324355013A5003591630 @default.
- W4324355013 hasAuthorship W4324355013A5018814025 @default.
- W4324355013 hasAuthorship W4324355013A5038768564 @default.
- W4324355013 hasAuthorship W4324355013A5039266973 @default.
- W4324355013 hasAuthorship W4324355013A5068665155 @default.
- W4324355013 hasAuthorship W4324355013A5075736599 @default.
- W4324355013 hasAuthorship W4324355013A5082156574 @default.
- W4324355013 hasAuthorship W4324355013A5084291346 @default.
- W4324355013 hasBestOaLocation W43243550131 @default.
- W4324355013 hasConcept C108583219 @default.
- W4324355013 hasConcept C115961682 @default.
- W4324355013 hasConcept C119857082 @default.
- W4324355013 hasConcept C124504099 @default.
- W4324355013 hasConcept C153180895 @default.
- W4324355013 hasConcept C154945302 @default.
- W4324355013 hasConcept C193536780 @default.
- W4324355013 hasConcept C30703548 @default.
- W4324355013 hasConcept C31972630 @default.
- W4324355013 hasConcept C41008148 @default.
- W4324355013 hasConcept C46686674 @default.
- W4324355013 hasConcept C89600930 @default.
- W4324355013 hasConcept C9417928 @default.
- W4324355013 hasConceptScore W4324355013C108583219 @default.
- W4324355013 hasConceptScore W4324355013C115961682 @default.
- W4324355013 hasConceptScore W4324355013C119857082 @default.
- W4324355013 hasConceptScore W4324355013C124504099 @default.
- W4324355013 hasConceptScore W4324355013C153180895 @default.
- W4324355013 hasConceptScore W4324355013C154945302 @default.
- W4324355013 hasConceptScore W4324355013C193536780 @default.
- W4324355013 hasConceptScore W4324355013C30703548 @default.
- W4324355013 hasConceptScore W4324355013C31972630 @default.
- W4324355013 hasConceptScore W4324355013C41008148 @default.
- W4324355013 hasConceptScore W4324355013C46686674 @default.
- W4324355013 hasConceptScore W4324355013C89600930 @default.
- W4324355013 hasConceptScore W4324355013C9417928 @default.
- W4324355013 hasFunder F4320321001 @default.