Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324356412> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4324356412 abstract "Machine learning is a multidisciplinary field combining statistics, computer science and artificial intelligence. This research finds a way to use machine learning to predict the chance of heart attack based on information about the patient. There are 13 features collected about each patient which are age, sex, cholesterol, chest pain type, maximum heart rate achieved, resting blood pressure, resting electrocardiographic results, fasting blood sugar, exercise-induced angina, previous peak, slope, number of major blood vessels, and thalassemia. The information of all the patients is put into a dataset. The dataset is split into two sets, one for training and another for validation. A computer model using a supervised learning algorithm is developed and trained to predict the chance of heart attack. During training, the training set is used for training the model, while the validation set is used for evaluating the accuracy of the model." @default.
- W4324356412 created "2023-03-16" @default.
- W4324356412 creator A5064012880 @default.
- W4324356412 creator A5083363840 @default.
- W4324356412 date "2022-08-31" @default.
- W4324356412 modified "2023-09-30" @default.
- W4324356412 title "Predicting the Chance of Heart Attack with a Machine Learning Approach – Supervised Learning" @default.
- W4324356412 doi "https://doi.org/10.47611/jsrhs.v11i3.3380" @default.
- W4324356412 hasPublicationYear "2022" @default.
- W4324356412 type Work @default.
- W4324356412 citedByCount "0" @default.
- W4324356412 crossrefType "journal-article" @default.
- W4324356412 hasAuthorship W4324356412A5064012880 @default.
- W4324356412 hasAuthorship W4324356412A5083363840 @default.
- W4324356412 hasBestOaLocation W43243564121 @default.
- W4324356412 hasConcept C119857082 @default.
- W4324356412 hasConcept C126322002 @default.
- W4324356412 hasConcept C154945302 @default.
- W4324356412 hasConcept C177264268 @default.
- W4324356412 hasConcept C199360897 @default.
- W4324356412 hasConcept C202444582 @default.
- W4324356412 hasConcept C2777953023 @default.
- W4324356412 hasConcept C33923547 @default.
- W4324356412 hasConcept C41008148 @default.
- W4324356412 hasConcept C71924100 @default.
- W4324356412 hasConcept C84393581 @default.
- W4324356412 hasConcept C9652623 @default.
- W4324356412 hasConceptScore W4324356412C119857082 @default.
- W4324356412 hasConceptScore W4324356412C126322002 @default.
- W4324356412 hasConceptScore W4324356412C154945302 @default.
- W4324356412 hasConceptScore W4324356412C177264268 @default.
- W4324356412 hasConceptScore W4324356412C199360897 @default.
- W4324356412 hasConceptScore W4324356412C202444582 @default.
- W4324356412 hasConceptScore W4324356412C2777953023 @default.
- W4324356412 hasConceptScore W4324356412C33923547 @default.
- W4324356412 hasConceptScore W4324356412C41008148 @default.
- W4324356412 hasConceptScore W4324356412C71924100 @default.
- W4324356412 hasConceptScore W4324356412C84393581 @default.
- W4324356412 hasConceptScore W4324356412C9652623 @default.
- W4324356412 hasIssue "3" @default.
- W4324356412 hasLocation W43243564121 @default.
- W4324356412 hasOpenAccess W4324356412 @default.
- W4324356412 hasPrimaryLocation W43243564121 @default.
- W4324356412 hasRelatedWork W2013824670 @default.
- W4324356412 hasRelatedWork W2071690730 @default.
- W4324356412 hasRelatedWork W2163991709 @default.
- W4324356412 hasRelatedWork W2961085424 @default.
- W4324356412 hasRelatedWork W3046775127 @default.
- W4324356412 hasRelatedWork W4285260836 @default.
- W4324356412 hasRelatedWork W4286629047 @default.
- W4324356412 hasRelatedWork W4306321456 @default.
- W4324356412 hasRelatedWork W4306674287 @default.
- W4324356412 hasRelatedWork W4224009465 @default.
- W4324356412 hasVolume "11" @default.
- W4324356412 isParatext "false" @default.
- W4324356412 isRetracted "false" @default.
- W4324356412 workType "article" @default.