Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324358436> ?p ?o ?g. }
- W4324358436 endingPage "617" @default.
- W4324358436 startingPage "617" @default.
- W4324358436 abstract "The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore, identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation, namely electrolysis time (min), electric voltage (V), and catalyst amount (μg). The proposed methodology contains the following two phases: modeling and optimization. Initially, a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that, a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration, electric voltage, and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM), the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7%, respectively. Overall, this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry, which would help to reduce the industry’s carbon footprint and promote sustainability." @default.
- W4324358436 created "2023-03-16" @default.
- W4324358436 creator A5040378066 @default.
- W4324358436 creator A5041294922 @default.
- W4324358436 creator A5056743382 @default.
- W4324358436 creator A5064059746 @default.
- W4324358436 creator A5086816810 @default.
- W4324358436 date "2023-03-15" @default.
- W4324358436 modified "2023-10-03" @default.
- W4324358436 title "Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization" @default.
- W4324358436 cites W2039681396 @default.
- W4324358436 cites W2571124200 @default.
- W4324358436 cites W2586373160 @default.
- W4324358436 cites W2588961434 @default.
- W4324358436 cites W2901502468 @default.
- W4324358436 cites W2902486105 @default.
- W4324358436 cites W2905268157 @default.
- W4324358436 cites W2909430393 @default.
- W4324358436 cites W2911641889 @default.
- W4324358436 cites W2976859075 @default.
- W4324358436 cites W2984392634 @default.
- W4324358436 cites W2995297613 @default.
- W4324358436 cites W3000632091 @default.
- W4324358436 cites W3006564639 @default.
- W4324358436 cites W3009208041 @default.
- W4324358436 cites W3017139376 @default.
- W4324358436 cites W3022399048 @default.
- W4324358436 cites W3032621607 @default.
- W4324358436 cites W3037487938 @default.
- W4324358436 cites W3068080670 @default.
- W4324358436 cites W3092840895 @default.
- W4324358436 cites W3097405972 @default.
- W4324358436 cites W3108603965 @default.
- W4324358436 cites W3114056727 @default.
- W4324358436 cites W3114726705 @default.
- W4324358436 cites W3130237679 @default.
- W4324358436 cites W3155205771 @default.
- W4324358436 cites W3178533164 @default.
- W4324358436 cites W3179715996 @default.
- W4324358436 cites W3193447583 @default.
- W4324358436 cites W3198705625 @default.
- W4324358436 cites W3200099034 @default.
- W4324358436 cites W3203248024 @default.
- W4324358436 cites W3203504421 @default.
- W4324358436 cites W3211948016 @default.
- W4324358436 cites W4206918024 @default.
- W4324358436 cites W4210443074 @default.
- W4324358436 cites W4210696342 @default.
- W4324358436 cites W4220821975 @default.
- W4324358436 cites W4220867937 @default.
- W4324358436 cites W4223450316 @default.
- W4324358436 cites W4281643599 @default.
- W4324358436 cites W4281751559 @default.
- W4324358436 cites W4283726058 @default.
- W4324358436 cites W4283739782 @default.
- W4324358436 cites W4285725469 @default.
- W4324358436 cites W4286209637 @default.
- W4324358436 cites W4286781081 @default.
- W4324358436 cites W4291197342 @default.
- W4324358436 cites W4292967627 @default.
- W4324358436 cites W4293066493 @default.
- W4324358436 cites W4294176620 @default.
- W4324358436 cites W4294576351 @default.
- W4324358436 cites W4297237941 @default.
- W4324358436 cites W4297882623 @default.
- W4324358436 cites W4306385364 @default.
- W4324358436 cites W4306385936 @default.
- W4324358436 cites W4307988539 @default.
- W4324358436 cites W4308345571 @default.
- W4324358436 cites W4309154712 @default.
- W4324358436 cites W4309308790 @default.
- W4324358436 cites W4310191264 @default.
- W4324358436 cites W4310287091 @default.
- W4324358436 cites W4312082922 @default.
- W4324358436 cites W4312126210 @default.
- W4324358436 cites W4312187270 @default.
- W4324358436 cites W4312199869 @default.
- W4324358436 cites W4313269623 @default.
- W4324358436 cites W4313402552 @default.
- W4324358436 cites W4313471841 @default.
- W4324358436 cites W4313487511 @default.
- W4324358436 cites W4313621249 @default.
- W4324358436 cites W4313826212 @default.
- W4324358436 cites W4316465196 @default.
- W4324358436 cites W4317206994 @default.
- W4324358436 cites W4319019508 @default.
- W4324358436 cites W4319339145 @default.
- W4324358436 cites W4320076534 @default.
- W4324358436 cites W4321787095 @default.
- W4324358436 cites W4323046502 @default.
- W4324358436 cites W4323361449 @default.
- W4324358436 doi "https://doi.org/10.3390/jmse11030617" @default.
- W4324358436 hasPublicationYear "2023" @default.
- W4324358436 type Work @default.
- W4324358436 citedByCount "10" @default.
- W4324358436 countsByYear W43243584362023 @default.
- W4324358436 crossrefType "journal-article" @default.
- W4324358436 hasAuthorship W4324358436A5040378066 @default.