Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324367482> ?p ?o ?g. }
- W4324367482 endingPage "233" @default.
- W4324367482 startingPage "219" @default.
- W4324367482 abstract "Timely detection and treatment of retinal detachment (RD) could effectively save vision and reduce the risk of progressing visual field defects. High myopia (HM) is known to be associated with an increased risk of RD. Evidently, it should be clearly discriminated the individuals with high or low risk of RD in patients with HM. By using multi-parametric analysis, risk assessment, and other techniques, it is crucial to create cutting-edge screening programs that may be utilized to improve population eye health and develop person-specific, cost-effective preventative, and targeted therapeutic measures. Therefore, we propose a novel, routine blood parameters-based prediction model as a screening program to help distinguish who should offer detailed ophthalmic examinations for RD diagnosis, prevent visual field defect progression, and provide personalized, serial monitoring in the context of predictive, preventive, and personalized medicine (PPPM/3 PM).This population-based study included 20,870 subjects (HM = 19,284, HMRD = 1586) who underwent detailed routine blood tests and ophthalmic evaluations. HMRD cases and HM controls were matched using a nested case-control design. Then, the HMRD cases and HM controls were randomly assigned to the discovery cohort, validation cohort 1, and validation cohort 2 maintaining a 6:2:2 ratio, and other subjects were assigned to the HM validation cohort. Receiver operating characteristic curve analysis was performed to select feature indexes. Feature indexes were integrated into seven algorithm models, and an optimal model was selected based on the highest area under the curve (AUC) and accuracy.Six feature indexes were selected: lymphocyte, basophil, mean platelet volume, platelet distribution width, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. Among the algorithm models, the algorithm of conditional probability (ACP) showed the best performance achieving an AUC of 0.79, a diagnostic accuracy of 0.72, a sensitivity of 0.71, and a specificity of 0.74 in the discovery cohort. A good performance of the ACP model was also observed in the validation cohort 1 (AUC = 0.81, accuracy = 0.72, sensitivity = 0.71, specificity = 0.73) and validation cohort 2 (AUC = 0.77, accuracy = 0.71, sensitivity = 0.70, specificity = 0.72). In addition, ACP model calibration was found to be good across three cohorts. In the HM validation cohort, the ACP model achieved a diagnostic accuracy of 0.81 for negative classification.We have developed a routine blood parameters-based model with an ACP algorithm that could potentially be applied in the clinic with a PPPM approach for serial monitoring and predicting the occurrence of RD in HM and can facilitate the prevention of HM progression to RD. According to the current study, routine blood measures are essential in patient risk classification, predictive diagnosis, and targeted therapy. Therefore, for high-risk RD persons, novel screening programs and prompt treatment plans are essential to enhance individual outcomes and healthcare offered to the community with HM.The online version contains supplementary material available at 10.1007/s13167-023-00319-3." @default.
- W4324367482 created "2023-03-16" @default.
- W4324367482 creator A5037535523 @default.
- W4324367482 creator A5040625222 @default.
- W4324367482 creator A5056059212 @default.
- W4324367482 creator A5057626845 @default.
- W4324367482 creator A5062859227 @default.
- W4324367482 creator A5081476497 @default.
- W4324367482 creator A5091349849 @default.
- W4324367482 date "2023-03-15" @default.
- W4324367482 modified "2023-10-11" @default.
- W4324367482 title "Development and validation of a routine blood parameters-based model for screening the occurrence of retinal detachment in high myopia in the context of PPPM" @default.
- W4324367482 cites W109092171 @default.
- W4324367482 cites W1990436130 @default.
- W4324367482 cites W2037541722 @default.
- W4324367482 cites W2056383820 @default.
- W4324367482 cites W2083993760 @default.
- W4324367482 cites W2127686951 @default.
- W4324367482 cites W2161675674 @default.
- W4324367482 cites W2169961704 @default.
- W4324367482 cites W2263495255 @default.
- W4324367482 cites W2282590795 @default.
- W4324367482 cites W2311495845 @default.
- W4324367482 cites W2482153873 @default.
- W4324367482 cites W2532686299 @default.
- W4324367482 cites W2599818285 @default.
- W4324367482 cites W2605454194 @default.
- W4324367482 cites W2613912445 @default.
- W4324367482 cites W2737477899 @default.
- W4324367482 cites W2748890376 @default.
- W4324367482 cites W2801567826 @default.
- W4324367482 cites W2949950487 @default.
- W4324367482 cites W2968081492 @default.
- W4324367482 cites W2976808722 @default.
- W4324367482 cites W2980276209 @default.
- W4324367482 cites W2984831376 @default.
- W4324367482 cites W2993021476 @default.
- W4324367482 cites W2999853165 @default.
- W4324367482 cites W3021995126 @default.
- W4324367482 cites W3023431388 @default.
- W4324367482 cites W3024574505 @default.
- W4324367482 cites W3039050908 @default.
- W4324367482 cites W3043672624 @default.
- W4324367482 cites W3047158315 @default.
- W4324367482 cites W3054721590 @default.
- W4324367482 cites W3109917366 @default.
- W4324367482 cites W3115536696 @default.
- W4324367482 cites W3126172682 @default.
- W4324367482 cites W3135271505 @default.
- W4324367482 cites W3138329850 @default.
- W4324367482 cites W3159823987 @default.
- W4324367482 cites W3164366940 @default.
- W4324367482 cites W3197652676 @default.
- W4324367482 cites W3198731995 @default.
- W4324367482 cites W3202688695 @default.
- W4324367482 cites W3208946499 @default.
- W4324367482 cites W4220672721 @default.
- W4324367482 cites W4220806015 @default.
- W4324367482 cites W4255271122 @default.
- W4324367482 cites W4281747382 @default.
- W4324367482 cites W4288056431 @default.
- W4324367482 cites W4309284039 @default.
- W4324367482 cites W4309581578 @default.
- W4324367482 cites W4317864614 @default.
- W4324367482 cites W4318336346 @default.
- W4324367482 cites W4361807887 @default.
- W4324367482 doi "https://doi.org/10.1007/s13167-023-00319-3" @default.
- W4324367482 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37275550" @default.
- W4324367482 hasPublicationYear "2023" @default.
- W4324367482 type Work @default.
- W4324367482 citedByCount "1" @default.
- W4324367482 crossrefType "journal-article" @default.
- W4324367482 hasAuthorship W4324367482A5037535523 @default.
- W4324367482 hasAuthorship W4324367482A5040625222 @default.
- W4324367482 hasAuthorship W4324367482A5056059212 @default.
- W4324367482 hasAuthorship W4324367482A5057626845 @default.
- W4324367482 hasAuthorship W4324367482A5062859227 @default.
- W4324367482 hasAuthorship W4324367482A5081476497 @default.
- W4324367482 hasAuthorship W4324367482A5091349849 @default.
- W4324367482 hasBestOaLocation W43243674821 @default.
- W4324367482 hasConcept C126322002 @default.
- W4324367482 hasConcept C151730666 @default.
- W4324367482 hasConcept C201903717 @default.
- W4324367482 hasConcept C2779343474 @default.
- W4324367482 hasConcept C2908647359 @default.
- W4324367482 hasConcept C32220436 @default.
- W4324367482 hasConcept C58471807 @default.
- W4324367482 hasConcept C60644358 @default.
- W4324367482 hasConcept C71924100 @default.
- W4324367482 hasConcept C72563966 @default.
- W4324367482 hasConcept C86803240 @default.
- W4324367482 hasConcept C99454951 @default.
- W4324367482 hasConceptScore W4324367482C126322002 @default.
- W4324367482 hasConceptScore W4324367482C151730666 @default.
- W4324367482 hasConceptScore W4324367482C201903717 @default.
- W4324367482 hasConceptScore W4324367482C2779343474 @default.
- W4324367482 hasConceptScore W4324367482C2908647359 @default.
- W4324367482 hasConceptScore W4324367482C32220436 @default.