Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324382122> ?p ?o ?g. }
- W4324382122 abstract "Parcel-level farmland information contains rich spatial distribution and boundary details, which is crucial for digital agriculture and agricultural resource surveys. However, the spatial complexity and heterogeneity of features resulting from high resolution makes it difficult to obtain parcel-level information quickly and accurately. In addition, existing methods do not sufficiently take into account the spatial topological information, particularly for blurred boundaries. Here, we develop a multi-task network model to extract plot-level cropland information. Specifically, the model consists of a cascaded multi-task network with integrated semantic and edge detection, a refinement network with fixed edge local connectivity, and an integrated fusion model. To validate the performance of the model, two typical tests were conducted in Denmark (Europe) and Chongqing (Asia) with high-resolution remote sensing images provided by Sentinel-2 (10 m) and Google Earth (0.53 m) as data sources. The results show that our proposed model outperforms other baseline models and exhibits higher performance. This study is expected to provide important support for the design of new global agricultural information management systems in the future." @default.
- W4324382122 created "2023-03-16" @default.
- W4324382122 creator A5001901149 @default.
- W4324382122 creator A5018074334 @default.
- W4324382122 creator A5021675234 @default.
- W4324382122 creator A5025314679 @default.
- W4324382122 creator A5039426902 @default.
- W4324382122 creator A5056379313 @default.
- W4324382122 creator A5088010841 @default.
- W4324382122 date "2023-03-15" @default.
- W4324382122 modified "2023-10-17" @default.
- W4324382122 title "Extraction of cropland field parcels with high resolution remote sensing using multi-task learning" @default.
- W4324382122 cites W1901129140 @default.
- W4324382122 cites W1903029394 @default.
- W4324382122 cites W1976129996 @default.
- W4324382122 cites W1984004063 @default.
- W4324382122 cites W2031573193 @default.
- W4324382122 cites W2072465375 @default.
- W4324382122 cites W2109754098 @default.
- W4324382122 cites W2161381512 @default.
- W4324382122 cites W2178470810 @default.
- W4324382122 cites W2194775991 @default.
- W4324382122 cites W2307770531 @default.
- W4324382122 cites W2592712793 @default.
- W4324382122 cites W2593886839 @default.
- W4324382122 cites W2757637497 @default.
- W4324382122 cites W2767953525 @default.
- W4324382122 cites W2783165089 @default.
- W4324382122 cites W2897702453 @default.
- W4324382122 cites W2898504016 @default.
- W4324382122 cites W2951982261 @default.
- W4324382122 cites W2959183777 @default.
- W4324382122 cites W2963073217 @default.
- W4324382122 cites W2963150697 @default.
- W4324382122 cites W2963268748 @default.
- W4324382122 cites W2963430933 @default.
- W4324382122 cites W2963877604 @default.
- W4324382122 cites W2971095420 @default.
- W4324382122 cites W2971551488 @default.
- W4324382122 cites W2975194617 @default.
- W4324382122 cites W2986456964 @default.
- W4324382122 cites W2989218065 @default.
- W4324382122 cites W2995297230 @default.
- W4324382122 cites W3007268491 @default.
- W4324382122 cites W3008248143 @default.
- W4324382122 cites W3016256692 @default.
- W4324382122 cites W3024167159 @default.
- W4324382122 cites W3025172026 @default.
- W4324382122 cites W3025869703 @default.
- W4324382122 cites W3035294798 @default.
- W4324382122 cites W3035358681 @default.
- W4324382122 cites W3035804495 @default.
- W4324382122 cites W3092609815 @default.
- W4324382122 cites W3102145192 @default.
- W4324382122 cites W3103263155 @default.
- W4324382122 cites W3132535040 @default.
- W4324382122 cites W3136113499 @default.
- W4324382122 cites W3155842973 @default.
- W4324382122 cites W4241071816 @default.
- W4324382122 cites W4251431888 @default.
- W4324382122 cites W4283516168 @default.
- W4324382122 cites W4285243313 @default.
- W4324382122 cites W845365781 @default.
- W4324382122 doi "https://doi.org/10.1080/22797254.2023.2181874" @default.
- W4324382122 hasPublicationYear "2023" @default.
- W4324382122 type Work @default.
- W4324382122 citedByCount "2" @default.
- W4324382122 countsByYear W43243821222023 @default.
- W4324382122 crossrefType "journal-article" @default.
- W4324382122 hasAuthorship W4324382122A5001901149 @default.
- W4324382122 hasAuthorship W4324382122A5018074334 @default.
- W4324382122 hasAuthorship W4324382122A5021675234 @default.
- W4324382122 hasAuthorship W4324382122A5025314679 @default.
- W4324382122 hasAuthorship W4324382122A5039426902 @default.
- W4324382122 hasAuthorship W4324382122A5056379313 @default.
- W4324382122 hasAuthorship W4324382122A5088010841 @default.
- W4324382122 hasBestOaLocation W43243821221 @default.
- W4324382122 hasConcept C111368507 @default.
- W4324382122 hasConcept C124101348 @default.
- W4324382122 hasConcept C12725497 @default.
- W4324382122 hasConcept C127313418 @default.
- W4324382122 hasConcept C127413603 @default.
- W4324382122 hasConcept C134306372 @default.
- W4324382122 hasConcept C154945302 @default.
- W4324382122 hasConcept C159620131 @default.
- W4324382122 hasConcept C162307627 @default.
- W4324382122 hasConcept C195807954 @default.
- W4324382122 hasConcept C201995342 @default.
- W4324382122 hasConcept C202444582 @default.
- W4324382122 hasConcept C205649164 @default.
- W4324382122 hasConcept C206345919 @default.
- W4324382122 hasConcept C2780451532 @default.
- W4324382122 hasConcept C31258907 @default.
- W4324382122 hasConcept C33923547 @default.
- W4324382122 hasConcept C33954974 @default.
- W4324382122 hasConcept C41008148 @default.
- W4324382122 hasConcept C41856607 @default.
- W4324382122 hasConcept C62354387 @default.
- W4324382122 hasConcept C62649853 @default.
- W4324382122 hasConcept C9652623 @default.