Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324382294> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4324382294 endingPage "3122" @default.
- W4324382294 startingPage "3122" @default.
- W4324382294 abstract "This paper presents a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. In contrast to the state-of-the-art works, our experimental results are validated with testbed-based real-world axle counting components. Furthermore, we aimed to detect targeted attacks on axle counting systems, which have higher impacts than conventional network attacks. We present a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. According to our findings, the proposed machine learning-based models were able to categorize six different network states (normal and under attack). The overall accuracy of the initial models was ca. 70-100% for the test data set in laboratory conditions. In operational conditions, the accuracy decreased to under 50%. To increase the accuracy, we introduce a novel input data-preprocessing method with the denoted gamma parameter. This increased the accuracy of the deep neural network model to 69.52% for six labels, 85.11% for five labels, and 92.02% for two labels. The gamma parameter also removed the dependence on the time series, enabled relevant classification of data in the real network, and increased the accuracy of the model in real operations. This parameter is influenced by simulated attacks and, thus, allows the classification of traffic into specified classes." @default.
- W4324382294 created "2023-03-16" @default.
- W4324382294 creator A5016166777 @default.
- W4324382294 creator A5024912551 @default.
- W4324382294 creator A5035998968 @default.
- W4324382294 creator A5062868729 @default.
- W4324382294 creator A5073470125 @default.
- W4324382294 creator A5077524659 @default.
- W4324382294 date "2023-03-14" @default.
- W4324382294 modified "2023-10-01" @default.
- W4324382294 title "Hunting Network Anomalies in a Railway Axle Counter System" @default.
- W4324382294 cites W2728072222 @default.
- W4324382294 cites W2770306303 @default.
- W4324382294 cites W2907184953 @default.
- W4324382294 cites W2916274405 @default.
- W4324382294 cites W2924962435 @default.
- W4324382294 cites W2964080939 @default.
- W4324382294 cites W2995121266 @default.
- W4324382294 cites W3007832695 @default.
- W4324382294 cites W3133913669 @default.
- W4324382294 cites W3166704115 @default.
- W4324382294 cites W4206490792 @default.
- W4324382294 cites W4214611057 @default.
- W4324382294 cites W4220892690 @default.
- W4324382294 cites W4225927428 @default.
- W4324382294 cites W4252076160 @default.
- W4324382294 cites W4289201998 @default.
- W4324382294 cites W4294955982 @default.
- W4324382294 cites W4295064770 @default.
- W4324382294 cites W4297838859 @default.
- W4324382294 cites W4304187284 @default.
- W4324382294 cites W4312907216 @default.
- W4324382294 doi "https://doi.org/10.3390/s23063122" @default.
- W4324382294 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36991830" @default.
- W4324382294 hasPublicationYear "2023" @default.
- W4324382294 type Work @default.
- W4324382294 citedByCount "0" @default.
- W4324382294 crossrefType "journal-article" @default.
- W4324382294 hasAuthorship W4324382294A5016166777 @default.
- W4324382294 hasAuthorship W4324382294A5024912551 @default.
- W4324382294 hasAuthorship W4324382294A5035998968 @default.
- W4324382294 hasAuthorship W4324382294A5062868729 @default.
- W4324382294 hasAuthorship W4324382294A5073470125 @default.
- W4324382294 hasAuthorship W4324382294A5077524659 @default.
- W4324382294 hasBestOaLocation W43243822941 @default.
- W4324382294 hasConcept C10551718 @default.
- W4324382294 hasConcept C119857082 @default.
- W4324382294 hasConcept C124101348 @default.
- W4324382294 hasConcept C127413603 @default.
- W4324382294 hasConcept C129727815 @default.
- W4324382294 hasConcept C154945302 @default.
- W4324382294 hasConcept C31258907 @default.
- W4324382294 hasConcept C31395832 @default.
- W4324382294 hasConcept C34736171 @default.
- W4324382294 hasConcept C35525427 @default.
- W4324382294 hasConcept C41008148 @default.
- W4324382294 hasConcept C50644808 @default.
- W4324382294 hasConcept C78519656 @default.
- W4324382294 hasConcept C79403827 @default.
- W4324382294 hasConceptScore W4324382294C10551718 @default.
- W4324382294 hasConceptScore W4324382294C119857082 @default.
- W4324382294 hasConceptScore W4324382294C124101348 @default.
- W4324382294 hasConceptScore W4324382294C127413603 @default.
- W4324382294 hasConceptScore W4324382294C129727815 @default.
- W4324382294 hasConceptScore W4324382294C154945302 @default.
- W4324382294 hasConceptScore W4324382294C31258907 @default.
- W4324382294 hasConceptScore W4324382294C31395832 @default.
- W4324382294 hasConceptScore W4324382294C34736171 @default.
- W4324382294 hasConceptScore W4324382294C35525427 @default.
- W4324382294 hasConceptScore W4324382294C41008148 @default.
- W4324382294 hasConceptScore W4324382294C50644808 @default.
- W4324382294 hasConceptScore W4324382294C78519656 @default.
- W4324382294 hasConceptScore W4324382294C79403827 @default.
- W4324382294 hasFunder F4320311333 @default.
- W4324382294 hasIssue "6" @default.
- W4324382294 hasLocation W43243822941 @default.
- W4324382294 hasLocation W43243822942 @default.
- W4324382294 hasLocation W43243822943 @default.
- W4324382294 hasLocation W43243822944 @default.
- W4324382294 hasOpenAccess W4324382294 @default.
- W4324382294 hasPrimaryLocation W43243822941 @default.
- W4324382294 hasRelatedWork W102552829 @default.
- W4324382294 hasRelatedWork W1975233362 @default.
- W4324382294 hasRelatedWork W2360064904 @default.
- W4324382294 hasRelatedWork W2360717114 @default.
- W4324382294 hasRelatedWork W2367545121 @default.
- W4324382294 hasRelatedWork W2373749036 @default.
- W4324382294 hasRelatedWork W2382928216 @default.
- W4324382294 hasRelatedWork W2952736244 @default.
- W4324382294 hasRelatedWork W3092506759 @default.
- W4324382294 hasRelatedWork W4248881655 @default.
- W4324382294 hasVolume "23" @default.
- W4324382294 isParatext "false" @default.
- W4324382294 isRetracted "false" @default.
- W4324382294 workType "article" @default.