Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324382619> ?p ?o ?g. }
- W4324382619 endingPage "5140" @default.
- W4324382619 startingPage "5140" @default.
- W4324382619 abstract "Speech emotion recognition is an important research topic that can help to maintain and improve public health and contribute towards the ongoing progress of healthcare technology. There have been several advancements in the field of speech emotion recognition systems including the use of deep learning models and new acoustic and temporal features. This paper proposes a self-attention-based deep learning model that was created by combining a two-dimensional Convolutional Neural Network (CNN) and a long short-term memory (LSTM) network. This research builds on the existing literature to identify the best-performing features for this task with extensive experiments on different combinations of spectral and rhythmic information. Mel Frequency Cepstral Coefficients (MFCCs) emerged as the best performing features for this task. The experiments were performed on a customised dataset that was developed as a combination of RAVDESS, SAVEE, and TESS datasets. Eight states of emotions (happy, sad, angry, surprise, disgust, calm, fearful, and neutral) were detected. The proposed attention-based deep learning model achieved an average test accuracy rate of 90%, which is a substantial improvement over established models. Hence, this emotion detection model has the potential to improve automated mental health monitoring." @default.
- W4324382619 created "2023-03-16" @default.
- W4324382619 creator A5012724019 @default.
- W4324382619 creator A5017257483 @default.
- W4324382619 creator A5033258757 @default.
- W4324382619 date "2023-03-14" @default.
- W4324382619 modified "2023-10-18" @default.
- W4324382619 title "Speech Emotion Recognition Using Attention Model" @default.
- W4324382619 cites W1505110664 @default.
- W4324382619 cites W2016618864 @default.
- W4324382619 cites W2030144871 @default.
- W4324382619 cites W2038936610 @default.
- W4324382619 cites W2054941444 @default.
- W4324382619 cites W2061068689 @default.
- W4324382619 cites W2110052520 @default.
- W4324382619 cites W2123119128 @default.
- W4324382619 cites W2144345993 @default.
- W4324382619 cites W2239141610 @default.
- W4324382619 cites W2292733088 @default.
- W4324382619 cites W2295001676 @default.
- W4324382619 cites W2312140198 @default.
- W4324382619 cites W2602034649 @default.
- W4324382619 cites W2625297138 @default.
- W4324382619 cites W2790854021 @default.
- W4324382619 cites W2794081072 @default.
- W4324382619 cites W2797694788 @default.
- W4324382619 cites W2884795774 @default.
- W4324382619 cites W2889717020 @default.
- W4324382619 cites W2892071465 @default.
- W4324382619 cites W2908685852 @default.
- W4324382619 cites W2937584914 @default.
- W4324382619 cites W2954933821 @default.
- W4324382619 cites W2962770129 @default.
- W4324382619 cites W2964128364 @default.
- W4324382619 cites W2969889150 @default.
- W4324382619 cites W2972691009 @default.
- W4324382619 cites W3002872170 @default.
- W4324382619 cites W3004344051 @default.
- W4324382619 cites W3007944646 @default.
- W4324382619 cites W3011859875 @default.
- W4324382619 cites W3086923691 @default.
- W4324382619 cites W3095648847 @default.
- W4324382619 cites W3118303233 @default.
- W4324382619 cites W3132302778 @default.
- W4324382619 cites W3136524425 @default.
- W4324382619 cites W3160406704 @default.
- W4324382619 cites W3162742210 @default.
- W4324382619 cites W3163179600 @default.
- W4324382619 cites W3173127765 @default.
- W4324382619 cites W3198724388 @default.
- W4324382619 cites W3199122385 @default.
- W4324382619 cites W4200602804 @default.
- W4324382619 cites W4221046698 @default.
- W4324382619 cites W4224234075 @default.
- W4324382619 cites W4283390999 @default.
- W4324382619 cites W4283833703 @default.
- W4324382619 cites W4289134016 @default.
- W4324382619 cites W4297841697 @default.
- W4324382619 cites W4309965782 @default.
- W4324382619 cites W4311098495 @default.
- W4324382619 doi "https://doi.org/10.3390/ijerph20065140" @default.
- W4324382619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36982048" @default.
- W4324382619 hasPublicationYear "2023" @default.
- W4324382619 type Work @default.
- W4324382619 citedByCount "1" @default.
- W4324382619 crossrefType "journal-article" @default.
- W4324382619 hasAuthorship W4324382619A5012724019 @default.
- W4324382619 hasAuthorship W4324382619A5017257483 @default.
- W4324382619 hasAuthorship W4324382619A5033258757 @default.
- W4324382619 hasBestOaLocation W43243826191 @default.
- W4324382619 hasConcept C108583219 @default.
- W4324382619 hasConcept C118552586 @default.
- W4324382619 hasConcept C119857082 @default.
- W4324382619 hasConcept C151989614 @default.
- W4324382619 hasConcept C154945302 @default.
- W4324382619 hasConcept C15744967 @default.
- W4324382619 hasConcept C162324750 @default.
- W4324382619 hasConcept C187736073 @default.
- W4324382619 hasConcept C2777375102 @default.
- W4324382619 hasConcept C2779302386 @default.
- W4324382619 hasConcept C2780343955 @default.
- W4324382619 hasConcept C2780451532 @default.
- W4324382619 hasConcept C28490314 @default.
- W4324382619 hasConcept C41008148 @default.
- W4324382619 hasConcept C52622490 @default.
- W4324382619 hasConcept C77805123 @default.
- W4324382619 hasConcept C81363708 @default.
- W4324382619 hasConceptScore W4324382619C108583219 @default.
- W4324382619 hasConceptScore W4324382619C118552586 @default.
- W4324382619 hasConceptScore W4324382619C119857082 @default.
- W4324382619 hasConceptScore W4324382619C151989614 @default.
- W4324382619 hasConceptScore W4324382619C154945302 @default.
- W4324382619 hasConceptScore W4324382619C15744967 @default.
- W4324382619 hasConceptScore W4324382619C162324750 @default.
- W4324382619 hasConceptScore W4324382619C187736073 @default.
- W4324382619 hasConceptScore W4324382619C2777375102 @default.
- W4324382619 hasConceptScore W4324382619C2779302386 @default.
- W4324382619 hasConceptScore W4324382619C2780343955 @default.