Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324383485> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4324383485 endingPage "1099" @default.
- W4324383485 startingPage "1099" @default.
- W4324383485 abstract "The electrocardiogram (ECG) is the most common technique used to diagnose heart diseases. The electrical signals produced by the heart are recorded by chest electrodes and by the extremity electrodes placed on the limbs. Many diseases, such as arrhythmia, cardiomyopathy, coronary heart disease, and heart failure, can be diagnosed by examining ECG signals. The interpretation of these signals by experts may take a long time, and there may be differences between expert interpretations. Since technological developments are intertwined with the medical sciences, computer-assisted diagnostic methods have recently come forward. In computer science, machine learning techniques are often preferred for automatic detection. Quantum-based structures have emerged to increase the machine learning algorithm’s speed and classification performance. In this study, a quantum-based machine learning algorithm is applied to classify heart rhythms. The ECG properties were converted to qubit structure using principal component analysis (PCA). The resulting qubits are classified using the quantum support vector machine (QSVM) algorithm. Quantum computer simulation over Qiskit was used for classification studies. Within the scope of experimental studies, comparisons between classical SVM and QSVM were made using different data amounts and qubit numbers. In the results of the analysis, classical SVM achieved 86.96% accuracy, and QSVM achieved 84.64% accuracy. Despite the fact that the entire dataset was not used due to various limitations, these successful performances were achieved. Classification of medical data such as that from ECG has shown that quantum-based machine learning frameworks perform well despite current resource constraints. In this respect, the study includes essential contributions to the use of quantum-based machine learning methods on signal data in medicine." @default.
- W4324383485 created "2023-03-16" @default.
- W4324383485 creator A5037649961 @default.
- W4324383485 creator A5061561006 @default.
- W4324383485 date "2023-03-14" @default.
- W4324383485 modified "2023-10-14" @default.
- W4324383485 title "Performance Evaluation of Quantum-Based Machine Learning Algorithms for Cardiac Arrhythmia Classification" @default.
- W4324383485 cites W2103956991 @default.
- W4324383485 cites W2560386163 @default.
- W4324383485 cites W2749353276 @default.
- W4324383485 cites W2903686041 @default.
- W4324383485 cites W2913789442 @default.
- W4324383485 cites W2919115771 @default.
- W4324383485 cites W2962976797 @default.
- W4324383485 cites W2996959172 @default.
- W4324383485 cites W3009955364 @default.
- W4324383485 cites W3037315640 @default.
- W4324383485 cites W3150319634 @default.
- W4324383485 cites W3157928585 @default.
- W4324383485 cites W3160768652 @default.
- W4324383485 cites W3170087560 @default.
- W4324383485 cites W3190873402 @default.
- W4324383485 cites W3197734067 @default.
- W4324383485 cites W3201016655 @default.
- W4324383485 cites W3210000721 @default.
- W4324383485 cites W4206909988 @default.
- W4324383485 cites W4207081024 @default.
- W4324383485 cites W4285071538 @default.
- W4324383485 cites W4289733841 @default.
- W4324383485 doi "https://doi.org/10.3390/diagnostics13061099" @default.
- W4324383485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36980406" @default.
- W4324383485 hasPublicationYear "2023" @default.
- W4324383485 type Work @default.
- W4324383485 citedByCount "0" @default.
- W4324383485 crossrefType "journal-article" @default.
- W4324383485 hasAuthorship W4324383485A5037649961 @default.
- W4324383485 hasAuthorship W4324383485A5061561006 @default.
- W4324383485 hasBestOaLocation W43243834851 @default.
- W4324383485 hasConcept C11413529 @default.
- W4324383485 hasConcept C119857082 @default.
- W4324383485 hasConcept C121332964 @default.
- W4324383485 hasConcept C12267149 @default.
- W4324383485 hasConcept C154945302 @default.
- W4324383485 hasConcept C164705383 @default.
- W4324383485 hasConcept C203087015 @default.
- W4324383485 hasConcept C2779094486 @default.
- W4324383485 hasConcept C2779161974 @default.
- W4324383485 hasConcept C2988455589 @default.
- W4324383485 hasConcept C41008148 @default.
- W4324383485 hasConcept C58053490 @default.
- W4324383485 hasConcept C62520636 @default.
- W4324383485 hasConcept C71924100 @default.
- W4324383485 hasConcept C84114770 @default.
- W4324383485 hasConceptScore W4324383485C11413529 @default.
- W4324383485 hasConceptScore W4324383485C119857082 @default.
- W4324383485 hasConceptScore W4324383485C121332964 @default.
- W4324383485 hasConceptScore W4324383485C12267149 @default.
- W4324383485 hasConceptScore W4324383485C154945302 @default.
- W4324383485 hasConceptScore W4324383485C164705383 @default.
- W4324383485 hasConceptScore W4324383485C203087015 @default.
- W4324383485 hasConceptScore W4324383485C2779094486 @default.
- W4324383485 hasConceptScore W4324383485C2779161974 @default.
- W4324383485 hasConceptScore W4324383485C2988455589 @default.
- W4324383485 hasConceptScore W4324383485C41008148 @default.
- W4324383485 hasConceptScore W4324383485C58053490 @default.
- W4324383485 hasConceptScore W4324383485C62520636 @default.
- W4324383485 hasConceptScore W4324383485C71924100 @default.
- W4324383485 hasConceptScore W4324383485C84114770 @default.
- W4324383485 hasIssue "6" @default.
- W4324383485 hasLocation W43243834851 @default.
- W4324383485 hasLocation W43243834852 @default.
- W4324383485 hasLocation W43243834853 @default.
- W4324383485 hasOpenAccess W4324383485 @default.
- W4324383485 hasPrimaryLocation W43243834851 @default.
- W4324383485 hasRelatedWork W1996541855 @default.
- W4324383485 hasRelatedWork W2559394418 @default.
- W4324383485 hasRelatedWork W2981886227 @default.
- W4324383485 hasRelatedWork W3195168932 @default.
- W4324383485 hasRelatedWork W3206424815 @default.
- W4324383485 hasRelatedWork W4285095492 @default.
- W4324383485 hasRelatedWork W4287713741 @default.
- W4324383485 hasRelatedWork W4316658362 @default.
- W4324383485 hasRelatedWork W4323032116 @default.
- W4324383485 hasRelatedWork W4364301842 @default.
- W4324383485 hasVolume "13" @default.
- W4324383485 isParatext "false" @default.
- W4324383485 isRetracted "false" @default.
- W4324383485 workType "article" @default.