Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324393045> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4324393045 endingPage "43" @default.
- W4324393045 startingPage "29" @default.
- W4324393045 abstract "The need for monitoring the state of a traffic network versus the costly installation and maintenance of roadside sensors constitutes the tough sensor placement problem in designing transportation networks. Placement problems naturally lie in the category of subset selection problems, which are known to be inherently combinatorial, and therefore, finding their exact solution is intractable for large problems. Due to this intractability, numerous heuristics have been proposed in the literature for approximately solving placement problems for traffic networks. Among these approaches, it has been observed that greedy algorithms normally outperform other heuristics. In this paper, we show the mathematics of why greedy algorithms are appropriate proxies for solving these subset selection problems; similar to placement problems for linear systems, placement problems for traffic networks also normally have a submodular structure. In this work, we analyze the problem of road sensor placement for transportation networks under different information structures available: when no vehicle routing information is available, when vehicles’ routings are known, and when it is necessary to maximize the number of origin–destination (O/D) traffic flows that are monitored with a set of sensors. We show that in all these cases, the placement problem has a submodular monotone structure. It is well known that the submodularity and monotonicity of discrete optimization problems can be leveraged to derive greedy algorithms that approximate the optimal solution. Consequently, our result is of great practical importance since by exploiting the submodularity and monotonicity of a problem, we show that it is possible to use polynomial-time greedy algorithms to approximate the combinatorial optimization problem with guaranteed optimality bounds for large problems, which are intractable to solve otherwise. Our results shed light upon the success of heuristic greedy algorithms that have been developed in some of the literature for solving placement problems at scale. To demonstrate the applicability of submodular optimization for solving placement problems, we first compare the performance of our polynomial-time approximation algorithm with the true optimum in an example traffic network which is small enough for finding the exact optimal solution with enumerating all possible subsets. Then, we investigate and validate our submodular approach in a case study involving a large-scale traffic network in Berkeley, California, where finding the exact optimal solution is intractable. Submodularity of the placement problem in these scenarios provides a powerful computational tool which can be further extended to other placement problem formulations that can become a reference for solving similar problems in the transportation literature." @default.
- W4324393045 created "2023-03-16" @default.
- W4324393045 creator A5002745879 @default.
- W4324393045 creator A5052497027 @default.
- W4324393045 creator A5062267932 @default.
- W4324393045 date "2023-05-01" @default.
- W4324393045 modified "2023-10-14" @default.
- W4324393045 title "Submodularity of optimal sensor placement for traffic networks" @default.
- W4324393045 cites W1657732787 @default.
- W4324393045 cites W1680189815 @default.
- W4324393045 cites W1938602245 @default.
- W4324393045 cites W2007894170 @default.
- W4324393045 cites W2028626889 @default.
- W4324393045 cites W2044128787 @default.
- W4324393045 cites W2093244236 @default.
- W4324393045 cites W2104735568 @default.
- W4324393045 cites W2143996311 @default.
- W4324393045 cites W2144488633 @default.
- W4324393045 cites W2159633185 @default.
- W4324393045 cites W2236592964 @default.
- W4324393045 cites W2307898167 @default.
- W4324393045 cites W2462517933 @default.
- W4324393045 cites W2963300745 @default.
- W4324393045 doi "https://doi.org/10.1016/j.trb.2023.02.008" @default.
- W4324393045 hasPublicationYear "2023" @default.
- W4324393045 type Work @default.
- W4324393045 citedByCount "1" @default.
- W4324393045 countsByYear W43243930452023 @default.
- W4324393045 crossrefType "journal-article" @default.
- W4324393045 hasAuthorship W4324393045A5002745879 @default.
- W4324393045 hasAuthorship W4324393045A5052497027 @default.
- W4324393045 hasAuthorship W4324393045A5062267932 @default.
- W4324393045 hasBestOaLocation W43243930451 @default.
- W4324393045 hasConcept C11413529 @default.
- W4324393045 hasConcept C126255220 @default.
- W4324393045 hasConcept C127705205 @default.
- W4324393045 hasConcept C137836250 @default.
- W4324393045 hasConcept C154945302 @default.
- W4324393045 hasConcept C177264268 @default.
- W4324393045 hasConcept C178621042 @default.
- W4324393045 hasConcept C199360897 @default.
- W4324393045 hasConcept C24590314 @default.
- W4324393045 hasConcept C2524010 @default.
- W4324393045 hasConcept C2834757 @default.
- W4324393045 hasConcept C31258907 @default.
- W4324393045 hasConcept C33923547 @default.
- W4324393045 hasConcept C41008148 @default.
- W4324393045 hasConcept C51823790 @default.
- W4324393045 hasConcept C74172769 @default.
- W4324393045 hasConcept C81917197 @default.
- W4324393045 hasConceptScore W4324393045C11413529 @default.
- W4324393045 hasConceptScore W4324393045C126255220 @default.
- W4324393045 hasConceptScore W4324393045C127705205 @default.
- W4324393045 hasConceptScore W4324393045C137836250 @default.
- W4324393045 hasConceptScore W4324393045C154945302 @default.
- W4324393045 hasConceptScore W4324393045C177264268 @default.
- W4324393045 hasConceptScore W4324393045C178621042 @default.
- W4324393045 hasConceptScore W4324393045C199360897 @default.
- W4324393045 hasConceptScore W4324393045C24590314 @default.
- W4324393045 hasConceptScore W4324393045C2524010 @default.
- W4324393045 hasConceptScore W4324393045C2834757 @default.
- W4324393045 hasConceptScore W4324393045C31258907 @default.
- W4324393045 hasConceptScore W4324393045C33923547 @default.
- W4324393045 hasConceptScore W4324393045C41008148 @default.
- W4324393045 hasConceptScore W4324393045C51823790 @default.
- W4324393045 hasConceptScore W4324393045C74172769 @default.
- W4324393045 hasConceptScore W4324393045C81917197 @default.
- W4324393045 hasFunder F4320306076 @default.
- W4324393045 hasFunder F4320307381 @default.
- W4324393045 hasLocation W43243930451 @default.
- W4324393045 hasOpenAccess W4324393045 @default.
- W4324393045 hasPrimaryLocation W43243930451 @default.
- W4324393045 hasRelatedWork W1533846201 @default.
- W4324393045 hasRelatedWork W2022413371 @default.
- W4324393045 hasRelatedWork W2739627855 @default.
- W4324393045 hasRelatedWork W2740307401 @default.
- W4324393045 hasRelatedWork W2968068505 @default.
- W4324393045 hasRelatedWork W2979258159 @default.
- W4324393045 hasRelatedWork W3007115331 @default.
- W4324393045 hasRelatedWork W3037266553 @default.
- W4324393045 hasRelatedWork W3038440381 @default.
- W4324393045 hasRelatedWork W4386157806 @default.
- W4324393045 hasVolume "171" @default.
- W4324393045 isParatext "false" @default.
- W4324393045 isRetracted "false" @default.
- W4324393045 workType "article" @default.