Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327499851> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4327499851 abstract "The power of social media as a catalyst for societal transformation is now unrivalled. What happens in one part of the world has repercussions in other parts of the world. This is because the vast quantities of data produced by these platforms may be instantly disseminated to any part of the globe. To make cyber space as welcoming and productive as feasible for all users, developers of these platforms must overcome several obstacles. However, provocative speech and hate speech have emerged as major problems in recent years. The scale of this issue is so large that it cannot be solved by coordinated teamwork alone, no matter how hard people try. Actually, there is a need for the development of an automated approach that can identify and eliminate nasty and insulting remarks before they can do any damage. This paper offers a novel Deep Learning-based Hate Speech Detection Scheme (DL-HSDS) to identify hate speech in Twitter data. Even though there are a lot of HSDS methods available, many of them suffer from insufficient feature learning and poor dataset management, both of which negatively impact attack detection precision. Therefore, to improve detection accuracy, the suggested module integrates the Cuckoo Search Optimization algorithm (CSO) with the (SDPN); CSO picks the optimum features in the datasets, and SDPN categorises the data as hate or normal. The suggested model, which employs the tweet text with CSO to imprisonment the tweets' outperforms the previous models." @default.
- W4327499851 created "2023-03-17" @default.
- W4327499851 creator A5006705078 @default.
- W4327499851 creator A5018332668 @default.
- W4327499851 creator A5033495329 @default.
- W4327499851 date "2022-12-26" @default.
- W4327499851 modified "2023-10-18" @default.
- W4327499851 title "Hate Speech Detection using CSO based Polynomial Network using Twitter" @default.
- W4327499851 cites W3043684480 @default.
- W4327499851 cites W3083258776 @default.
- W4327499851 cites W3118142489 @default.
- W4327499851 cites W3121165570 @default.
- W4327499851 cites W3121384227 @default.
- W4327499851 cites W3211999114 @default.
- W4327499851 cites W4205286661 @default.
- W4327499851 cites W4213259260 @default.
- W4327499851 cites W4214605467 @default.
- W4327499851 cites W4214692777 @default.
- W4327499851 cites W4220725066 @default.
- W4327499851 cites W4220754885 @default.
- W4327499851 cites W4220887663 @default.
- W4327499851 cites W4225637082 @default.
- W4327499851 cites W4281251145 @default.
- W4327499851 cites W4289705056 @default.
- W4327499851 cites W4293690295 @default.
- W4327499851 cites W4297519263 @default.
- W4327499851 cites W4297989523 @default.
- W4327499851 cites W4308748714 @default.
- W4327499851 cites W4311628444 @default.
- W4327499851 doi "https://doi.org/10.1109/icerect56837.2022.10059728" @default.
- W4327499851 hasPublicationYear "2022" @default.
- W4327499851 type Work @default.
- W4327499851 citedByCount "0" @default.
- W4327499851 crossrefType "proceedings-article" @default.
- W4327499851 hasAuthorship W4327499851A5006705078 @default.
- W4327499851 hasAuthorship W4327499851A5018332668 @default.
- W4327499851 hasAuthorship W4327499851A5033495329 @default.
- W4327499851 hasConcept C117241572 @default.
- W4327499851 hasConcept C118487528 @default.
- W4327499851 hasConcept C119857082 @default.
- W4327499851 hasConcept C121332964 @default.
- W4327499851 hasConcept C124101348 @default.
- W4327499851 hasConcept C136764020 @default.
- W4327499851 hasConcept C154945302 @default.
- W4327499851 hasConcept C163258240 @default.
- W4327499851 hasConcept C2522767166 @default.
- W4327499851 hasConcept C2775899829 @default.
- W4327499851 hasConcept C2778755073 @default.
- W4327499851 hasConcept C38652104 @default.
- W4327499851 hasConcept C41008148 @default.
- W4327499851 hasConcept C518677369 @default.
- W4327499851 hasConcept C62520636 @default.
- W4327499851 hasConcept C71924100 @default.
- W4327499851 hasConcept C75684735 @default.
- W4327499851 hasConcept C85617194 @default.
- W4327499851 hasConceptScore W4327499851C117241572 @default.
- W4327499851 hasConceptScore W4327499851C118487528 @default.
- W4327499851 hasConceptScore W4327499851C119857082 @default.
- W4327499851 hasConceptScore W4327499851C121332964 @default.
- W4327499851 hasConceptScore W4327499851C124101348 @default.
- W4327499851 hasConceptScore W4327499851C136764020 @default.
- W4327499851 hasConceptScore W4327499851C154945302 @default.
- W4327499851 hasConceptScore W4327499851C163258240 @default.
- W4327499851 hasConceptScore W4327499851C2522767166 @default.
- W4327499851 hasConceptScore W4327499851C2775899829 @default.
- W4327499851 hasConceptScore W4327499851C2778755073 @default.
- W4327499851 hasConceptScore W4327499851C38652104 @default.
- W4327499851 hasConceptScore W4327499851C41008148 @default.
- W4327499851 hasConceptScore W4327499851C518677369 @default.
- W4327499851 hasConceptScore W4327499851C62520636 @default.
- W4327499851 hasConceptScore W4327499851C71924100 @default.
- W4327499851 hasConceptScore W4327499851C75684735 @default.
- W4327499851 hasConceptScore W4327499851C85617194 @default.
- W4327499851 hasLocation W43274998511 @default.
- W4327499851 hasOpenAccess W4327499851 @default.
- W4327499851 hasPrimaryLocation W43274998511 @default.
- W4327499851 hasRelatedWork W1488904332 @default.
- W4327499851 hasRelatedWork W1539266347 @default.
- W4327499851 hasRelatedWork W2000787479 @default.
- W4327499851 hasRelatedWork W2066920355 @default.
- W4327499851 hasRelatedWork W2267913355 @default.
- W4327499851 hasRelatedWork W2748952813 @default.
- W4327499851 hasRelatedWork W3135535244 @default.
- W4327499851 hasRelatedWork W4248006302 @default.
- W4327499851 hasRelatedWork W4256453413 @default.
- W4327499851 hasRelatedWork W2788570199 @default.
- W4327499851 isParatext "false" @default.
- W4327499851 isRetracted "false" @default.
- W4327499851 workType "article" @default.