Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327517948> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4327517948 endingPage "2895" @default.
- W4327517948 startingPage "2879" @default.
- W4327517948 abstract "Breast Cancer (BC) is considered the most commonly scrutinized cancer in women worldwide, affecting one in eight women in a lifetime. Mammography screening becomes one such standard method that is helpful in identifying suspicious masses’ malignancy of BC at an initial level. However, the prior identification of masses in mammograms was still challenging for extremely dense and dense breast categories and needs an effective and automatic mechanisms for helping radiotherapists in diagnosis. Deep learning (DL) techniques were broadly utilized for medical imaging applications, particularly breast mass classification. The advancements in the DL field paved the way for highly intellectual and self-reliant computer-aided diagnosis (CAD) systems since the learning capability of Machine Learning (ML) techniques was constantly improving. This paper presents a new Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification (HTDHDAE-BCC) on Digital Mammograms. The presented HTDHDAE-BCC model examines the mammogram images for the identification of BC. In the HTDHDAE-BCC model, the initial stage of image preprocessing is carried out using an average median filter. In addition, the deep convolutional neural network-based Inception v4 model is employed to generate feature vectors. The parameter tuning process uses the binary spider monkey optimization (BSMO) algorithm. The HTDHDAE-BCC model exploits chameleon swarm optimization (CSO) with the DHDAE model for BC classification. The experimental analysis of the HTDHDAE-BCC model is performed using the MIAS database. The experimental outcomes demonstrate the betterments of the HTDHDAE-BCC model over other recent approaches." @default.
- W4327517948 created "2023-03-17" @default.
- W4327517948 creator A5072745905 @default.
- W4327517948 date "2023-01-01" @default.
- W4327517948 modified "2023-10-14" @default.
- W4327517948 title "Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification on Digital Mammograms" @default.
- W4327517948 cites W2971800190 @default.
- W4327517948 cites W2993303538 @default.
- W4327517948 cites W3017794714 @default.
- W4327517948 cites W3078697145 @default.
- W4327517948 cites W3083119893 @default.
- W4327517948 cites W3115557277 @default.
- W4327517948 cites W3120678054 @default.
- W4327517948 cites W3163936961 @default.
- W4327517948 cites W3211066845 @default.
- W4327517948 doi "https://doi.org/10.32604/iasc.2023.034719" @default.
- W4327517948 hasPublicationYear "2023" @default.
- W4327517948 type Work @default.
- W4327517948 citedByCount "0" @default.
- W4327517948 crossrefType "journal-article" @default.
- W4327517948 hasAuthorship W4327517948A5072745905 @default.
- W4327517948 hasBestOaLocation W43275179481 @default.
- W4327517948 hasConcept C101738243 @default.
- W4327517948 hasConcept C108583219 @default.
- W4327517948 hasConcept C119857082 @default.
- W4327517948 hasConcept C121608353 @default.
- W4327517948 hasConcept C126322002 @default.
- W4327517948 hasConcept C153180895 @default.
- W4327517948 hasConcept C154945302 @default.
- W4327517948 hasConcept C2780472235 @default.
- W4327517948 hasConcept C34736171 @default.
- W4327517948 hasConcept C41008148 @default.
- W4327517948 hasConcept C530470458 @default.
- W4327517948 hasConcept C71924100 @default.
- W4327517948 hasConcept C81363708 @default.
- W4327517948 hasConcept C8642999 @default.
- W4327517948 hasConceptScore W4327517948C101738243 @default.
- W4327517948 hasConceptScore W4327517948C108583219 @default.
- W4327517948 hasConceptScore W4327517948C119857082 @default.
- W4327517948 hasConceptScore W4327517948C121608353 @default.
- W4327517948 hasConceptScore W4327517948C126322002 @default.
- W4327517948 hasConceptScore W4327517948C153180895 @default.
- W4327517948 hasConceptScore W4327517948C154945302 @default.
- W4327517948 hasConceptScore W4327517948C2780472235 @default.
- W4327517948 hasConceptScore W4327517948C34736171 @default.
- W4327517948 hasConceptScore W4327517948C41008148 @default.
- W4327517948 hasConceptScore W4327517948C530470458 @default.
- W4327517948 hasConceptScore W4327517948C71924100 @default.
- W4327517948 hasConceptScore W4327517948C81363708 @default.
- W4327517948 hasConceptScore W4327517948C8642999 @default.
- W4327517948 hasIssue "3" @default.
- W4327517948 hasLocation W43275179481 @default.
- W4327517948 hasOpenAccess W4327517948 @default.
- W4327517948 hasPrimaryLocation W43275179481 @default.
- W4327517948 hasRelatedWork W2669956259 @default.
- W4327517948 hasRelatedWork W2731899572 @default.
- W4327517948 hasRelatedWork W2998168123 @default.
- W4327517948 hasRelatedWork W3116150086 @default.
- W4327517948 hasRelatedWork W3130227562 @default.
- W4327517948 hasRelatedWork W3133861977 @default.
- W4327517948 hasRelatedWork W4200173597 @default.
- W4327517948 hasRelatedWork W4287995534 @default.
- W4327517948 hasRelatedWork W4312417841 @default.
- W4327517948 hasRelatedWork W4321369474 @default.
- W4327517948 hasVolume "36" @default.
- W4327517948 isParatext "false" @default.
- W4327517948 isRetracted "false" @default.
- W4327517948 workType "article" @default.