Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327521036> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4327521036 abstract "Financial event extraction aims to detect events from financial announcements and extract corresponding event arguments. This task is challenging because financial announcements are often long text, the arguments of an event are always scattered among different sentences in the document, and multiple events can coexist in the same document. It requires a comprehensive understanding of the document and the ability to aggregate arguments across multiple sentences. Most existing sentence-level event extraction methods only extract event arguments within the sentence range. These methods are not very effective for this task, and it is difficult to handle a large number of financial announcements. To address these issues, we propose a novel heterogeneous graph-based model HGCFEE with six types of edges designed to capture the interactions between sentences and entities using heterogeneous graphs. In-depth experiments and comprehensive analysis demonstrate the superiority of HGCFEE over baseline methods." @default.
- W4327521036 created "2023-03-17" @default.
- W4327521036 creator A5000577985 @default.
- W4327521036 creator A5033394913 @default.
- W4327521036 creator A5057734833 @default.
- W4327521036 creator A5066864248 @default.
- W4327521036 creator A5069089097 @default.
- W4327521036 date "2022-10-21" @default.
- W4327521036 modified "2023-09-27" @default.
- W4327521036 title "Heterogeneous Graph Neural Network for Chinese Financial Event Extraction" @default.
- W4327521036 cites W2064675550 @default.
- W4327521036 cites W2072628044 @default.
- W4327521036 cites W2250575108 @default.
- W4327521036 cites W2250999640 @default.
- W4327521036 cites W2508618307 @default.
- W4327521036 cites W2562564313 @default.
- W4327521036 cites W2788525741 @default.
- W4327521036 cites W2803884531 @default.
- W4327521036 cites W2952437275 @default.
- W4327521036 cites W2964206023 @default.
- W4327521036 cites W2970684294 @default.
- W4327521036 cites W3011802752 @default.
- W4327521036 cites W3104597568 @default.
- W4327521036 doi "https://doi.org/10.1145/3573428.3573749" @default.
- W4327521036 hasPublicationYear "2022" @default.
- W4327521036 type Work @default.
- W4327521036 citedByCount "0" @default.
- W4327521036 crossrefType "proceedings-article" @default.
- W4327521036 hasAuthorship W4327521036A5000577985 @default.
- W4327521036 hasAuthorship W4327521036A5033394913 @default.
- W4327521036 hasAuthorship W4327521036A5057734833 @default.
- W4327521036 hasAuthorship W4327521036A5066864248 @default.
- W4327521036 hasAuthorship W4327521036A5069089097 @default.
- W4327521036 hasConcept C111368507 @default.
- W4327521036 hasConcept C119857082 @default.
- W4327521036 hasConcept C121332964 @default.
- W4327521036 hasConcept C12725497 @default.
- W4327521036 hasConcept C127313418 @default.
- W4327521036 hasConcept C132525143 @default.
- W4327521036 hasConcept C154945302 @default.
- W4327521036 hasConcept C159985019 @default.
- W4327521036 hasConcept C162324750 @default.
- W4327521036 hasConcept C187736073 @default.
- W4327521036 hasConcept C192562407 @default.
- W4327521036 hasConcept C204321447 @default.
- W4327521036 hasConcept C2777530160 @default.
- W4327521036 hasConcept C2779662365 @default.
- W4327521036 hasConcept C2780451532 @default.
- W4327521036 hasConcept C41008148 @default.
- W4327521036 hasConcept C4679612 @default.
- W4327521036 hasConcept C50644808 @default.
- W4327521036 hasConcept C62520636 @default.
- W4327521036 hasConcept C80444323 @default.
- W4327521036 hasConceptScore W4327521036C111368507 @default.
- W4327521036 hasConceptScore W4327521036C119857082 @default.
- W4327521036 hasConceptScore W4327521036C121332964 @default.
- W4327521036 hasConceptScore W4327521036C12725497 @default.
- W4327521036 hasConceptScore W4327521036C127313418 @default.
- W4327521036 hasConceptScore W4327521036C132525143 @default.
- W4327521036 hasConceptScore W4327521036C154945302 @default.
- W4327521036 hasConceptScore W4327521036C159985019 @default.
- W4327521036 hasConceptScore W4327521036C162324750 @default.
- W4327521036 hasConceptScore W4327521036C187736073 @default.
- W4327521036 hasConceptScore W4327521036C192562407 @default.
- W4327521036 hasConceptScore W4327521036C204321447 @default.
- W4327521036 hasConceptScore W4327521036C2777530160 @default.
- W4327521036 hasConceptScore W4327521036C2779662365 @default.
- W4327521036 hasConceptScore W4327521036C2780451532 @default.
- W4327521036 hasConceptScore W4327521036C41008148 @default.
- W4327521036 hasConceptScore W4327521036C4679612 @default.
- W4327521036 hasConceptScore W4327521036C50644808 @default.
- W4327521036 hasConceptScore W4327521036C62520636 @default.
- W4327521036 hasConceptScore W4327521036C80444323 @default.
- W4327521036 hasLocation W43275210361 @default.
- W4327521036 hasOpenAccess W4327521036 @default.
- W4327521036 hasPrimaryLocation W43275210361 @default.
- W4327521036 hasRelatedWork W1567338489 @default.
- W4327521036 hasRelatedWork W159132833 @default.
- W4327521036 hasRelatedWork W1978971213 @default.
- W4327521036 hasRelatedWork W2081647779 @default.
- W4327521036 hasRelatedWork W3107474891 @default.
- W4327521036 hasRelatedWork W3184435227 @default.
- W4327521036 hasRelatedWork W3185852197 @default.
- W4327521036 hasRelatedWork W3186577291 @default.
- W4327521036 hasRelatedWork W38394648 @default.
- W4327521036 hasRelatedWork W1629725936 @default.
- W4327521036 isParatext "false" @default.
- W4327521036 isRetracted "false" @default.
- W4327521036 workType "article" @default.