Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327522256> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4327522256 endingPage "10" @default.
- W4327522256 startingPage "1" @default.
- W4327522256 abstract "Fast charging problem of lithium-ion batteries with minimum-charging time while limiting battery degradation, has been receiving increasing attention and is a critical challenge to battery community. Difficulties in this optimization lie in that: (i) The parameter space of charging strategies is high dimensional while the budget of the experimental cost is often limited; (ii) The evaluation of charging strategies' performance is expensive, and (iii) the degradation process of battery is strongly nonlinear and multiple degradation mechanisms occur simultaneously leading to difficulties for establishing accurate first-principles models. Current methods to address these difficulties are mainly electrochemical model-based optimization and grid search, which are rarely adaptive to battery degradation and/or are of low sample efficiency. In this work, we propose an adaptive model-based reinforcement learning (RL) approach for fast charging optimization while limiting battery degradation, in which a probabilistic surrogate model of differential Gaussian process (GP) is adopted to adaptively describe the degradation of cells. The effectiveness of the proposed approach is demonstrated on PETLION, a high-performance PET-based battery simulator. The results show that (i) compared with the model-free RL method, the proposed adaptive GP-based RL approach possesses superior charging performance and high sample efficiency, and (ii) the proposed method performs well in the handling of degradation constraints on voltage and temperature for dynamically aging batteries with its adaptability to the variations of environment." @default.
- W4327522256 created "2023-03-17" @default.
- W4327522256 creator A5014193997 @default.
- W4327522256 creator A5034045887 @default.
- W4327522256 creator A5038268580 @default.
- W4327522256 creator A5057981108 @default.
- W4327522256 date "2023-01-01" @default.
- W4327522256 modified "2023-09-27" @default.
- W4327522256 title "Adaptive Model-Based Reinforcement Learning for Fast Charging Optimization of Lithium-Ion Batteries" @default.
- W4327522256 doi "https://doi.org/10.1109/tii.2023.3257299" @default.
- W4327522256 hasPublicationYear "2023" @default.
- W4327522256 type Work @default.
- W4327522256 citedByCount "0" @default.
- W4327522256 crossrefType "journal-article" @default.
- W4327522256 hasAuthorship W4327522256A5014193997 @default.
- W4327522256 hasAuthorship W4327522256A5034045887 @default.
- W4327522256 hasAuthorship W4327522256A5038268580 @default.
- W4327522256 hasAuthorship W4327522256A5057981108 @default.
- W4327522256 hasConcept C111919701 @default.
- W4327522256 hasConcept C11413529 @default.
- W4327522256 hasConcept C121332964 @default.
- W4327522256 hasConcept C137836250 @default.
- W4327522256 hasConcept C154945302 @default.
- W4327522256 hasConcept C163258240 @default.
- W4327522256 hasConcept C2775924081 @default.
- W4327522256 hasConcept C2779679103 @default.
- W4327522256 hasConcept C41008148 @default.
- W4327522256 hasConcept C47446073 @default.
- W4327522256 hasConcept C49937458 @default.
- W4327522256 hasConcept C555008776 @default.
- W4327522256 hasConcept C62520636 @default.
- W4327522256 hasConcept C76155785 @default.
- W4327522256 hasConcept C97541855 @default.
- W4327522256 hasConcept C98045186 @default.
- W4327522256 hasConceptScore W4327522256C111919701 @default.
- W4327522256 hasConceptScore W4327522256C11413529 @default.
- W4327522256 hasConceptScore W4327522256C121332964 @default.
- W4327522256 hasConceptScore W4327522256C137836250 @default.
- W4327522256 hasConceptScore W4327522256C154945302 @default.
- W4327522256 hasConceptScore W4327522256C163258240 @default.
- W4327522256 hasConceptScore W4327522256C2775924081 @default.
- W4327522256 hasConceptScore W4327522256C2779679103 @default.
- W4327522256 hasConceptScore W4327522256C41008148 @default.
- W4327522256 hasConceptScore W4327522256C47446073 @default.
- W4327522256 hasConceptScore W4327522256C49937458 @default.
- W4327522256 hasConceptScore W4327522256C555008776 @default.
- W4327522256 hasConceptScore W4327522256C62520636 @default.
- W4327522256 hasConceptScore W4327522256C76155785 @default.
- W4327522256 hasConceptScore W4327522256C97541855 @default.
- W4327522256 hasConceptScore W4327522256C98045186 @default.
- W4327522256 hasLocation W43275222561 @default.
- W4327522256 hasOpenAccess W4327522256 @default.
- W4327522256 hasPrimaryLocation W43275222561 @default.
- W4327522256 hasRelatedWork W1562959674 @default.
- W4327522256 hasRelatedWork W2923653485 @default.
- W4327522256 hasRelatedWork W2952472710 @default.
- W4327522256 hasRelatedWork W2957776456 @default.
- W4327522256 hasRelatedWork W3005560120 @default.
- W4327522256 hasRelatedWork W4206669594 @default.
- W4327522256 hasRelatedWork W4255994452 @default.
- W4327522256 hasRelatedWork W4290792893 @default.
- W4327522256 hasRelatedWork W4361026739 @default.
- W4327522256 hasRelatedWork W4372194388 @default.
- W4327522256 isParatext "false" @default.
- W4327522256 isRetracted "false" @default.
- W4327522256 workType "article" @default.