Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327563563> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4327563563 abstract "Remote sensing has been evolving as a general method for multi-scale crop information extraction. Large scale multi-crop discrimination using airborne, or satellite remote sensing is required for farm level intervention and for decision making by various stake holders such as agriculture insurance companies, risk assessment agencies and local governments. Multispectral and hyperspectral remote sensing data from various platforms have been used for discriminating and mapping various crops. However, the number of crops, and the scale at which the discrimination is often limited to a few crops and is often approached as discrimination against other land cover classes. Further, multi-temporal datasets and spectral indices form the bulk of the datasets for crops discrimination. For potential operational application at field level, the ability to discriminate numerous crops-at least ten different crops at the same timeframe are vital. Furthermore, discrimination of crops grown under organic practices has promising application in the certification and quality assurance of agricultural produced sold as organic product. Theoretically, high resolution hyperspectral data has the capability to difference few tens of classes unambiguously. However, given the context of systematic spectral similarity in vegetation, especially crops, the potential of discrimination several crops are unclear. We, therefore, has assessed the spectral discrimination of as many as 23 different vegetable crops and attempted discriminating a few vegetable crops grown under organic and inorganic crop growing practices. For this, we have applied 12 different statistical and machine learning algorithms establishing the spectral discrimination and assessing its relative stand across the range of crops considered. The results indicate complex patterns of spectral discrimination wherein a few crops exhibit spectral similarity with several other crops at any scale of spectral characterization. The discrimination analysis of vegetable crops grown under organic and chemical input-based practices indicate a good discrimination. However, the quality of discrimination is substantially affected by the type of machine learning model used. We recommend coordinated multi-site and multi-phenology-based crop discrimination for establishing the stability of the discrimination observed across space and time." @default.
- W4327563563 created "2023-03-17" @default.
- W4327563563 creator A5015670917 @default.
- W4327563563 creator A5066238095 @default.
- W4327563563 creator A5076822035 @default.
- W4327563563 creator A5087947981 @default.
- W4327563563 date "2023-01-27" @default.
- W4327563563 modified "2023-09-28" @default.
- W4327563563 title "Spectral discrimination of vegetable crops using in situ hyperspectral data and reference to organic vegetables" @default.
- W4327563563 cites W1948819007 @default.
- W4327563563 cites W2052579783 @default.
- W4327563563 cites W2101640795 @default.
- W4327563563 cites W2119646458 @default.
- W4327563563 cites W3139428055 @default.
- W4327563563 cites W3205220056 @default.
- W4327563563 cites W3214942846 @default.
- W4327563563 cites W4210480843 @default.
- W4327563563 cites W4220780516 @default.
- W4327563563 cites W4281783385 @default.
- W4327563563 doi "https://doi.org/10.1109/migars57353.2023.10064553" @default.
- W4327563563 hasPublicationYear "2023" @default.
- W4327563563 type Work @default.
- W4327563563 citedByCount "0" @default.
- W4327563563 crossrefType "proceedings-article" @default.
- W4327563563 hasAuthorship W4327563563A5015670917 @default.
- W4327563563 hasAuthorship W4327563563A5066238095 @default.
- W4327563563 hasAuthorship W4327563563A5076822035 @default.
- W4327563563 hasAuthorship W4327563563A5087947981 @default.
- W4327563563 hasConcept C118518473 @default.
- W4327563563 hasConcept C120217122 @default.
- W4327563563 hasConcept C127413603 @default.
- W4327563563 hasConcept C159078339 @default.
- W4327563563 hasConcept C166957645 @default.
- W4327563563 hasConcept C173163844 @default.
- W4327563563 hasConcept C205649164 @default.
- W4327563563 hasConcept C2778755073 @default.
- W4327563563 hasConcept C2779343474 @default.
- W4327563563 hasConcept C39432304 @default.
- W4327563563 hasConcept C41008148 @default.
- W4327563563 hasConcept C58640448 @default.
- W4327563563 hasConcept C62649853 @default.
- W4327563563 hasConcept C88463610 @default.
- W4327563563 hasConcept C9770341 @default.
- W4327563563 hasConceptScore W4327563563C118518473 @default.
- W4327563563 hasConceptScore W4327563563C120217122 @default.
- W4327563563 hasConceptScore W4327563563C127413603 @default.
- W4327563563 hasConceptScore W4327563563C159078339 @default.
- W4327563563 hasConceptScore W4327563563C166957645 @default.
- W4327563563 hasConceptScore W4327563563C173163844 @default.
- W4327563563 hasConceptScore W4327563563C205649164 @default.
- W4327563563 hasConceptScore W4327563563C2778755073 @default.
- W4327563563 hasConceptScore W4327563563C2779343474 @default.
- W4327563563 hasConceptScore W4327563563C39432304 @default.
- W4327563563 hasConceptScore W4327563563C41008148 @default.
- W4327563563 hasConceptScore W4327563563C58640448 @default.
- W4327563563 hasConceptScore W4327563563C62649853 @default.
- W4327563563 hasConceptScore W4327563563C88463610 @default.
- W4327563563 hasConceptScore W4327563563C9770341 @default.
- W4327563563 hasLocation W43275635631 @default.
- W4327563563 hasOpenAccess W4327563563 @default.
- W4327563563 hasPrimaryLocation W43275635631 @default.
- W4327563563 hasRelatedWork W1494890856 @default.
- W4327563563 hasRelatedWork W2054443752 @default.
- W4327563563 hasRelatedWork W2111879521 @default.
- W4327563563 hasRelatedWork W2309346848 @default.
- W4327563563 hasRelatedWork W2522121021 @default.
- W4327563563 hasRelatedWork W2730843485 @default.
- W4327563563 hasRelatedWork W2954768068 @default.
- W4327563563 hasRelatedWork W3129727445 @default.
- W4327563563 hasRelatedWork W4313005088 @default.
- W4327563563 hasRelatedWork W4320489071 @default.
- W4327563563 isParatext "false" @default.
- W4327563563 isRetracted "false" @default.
- W4327563563 workType "article" @default.