Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327564851> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4327564851 endingPage "10821" @default.
- W4327564851 startingPage "10806" @default.
- W4327564851 abstract "Drilling boreholes for the exploration of groundwater incurs high cost with potential risk of failures. However, borehole drilling should only be done in regions with a high probability of faster and easier access to water-bearing strata, so that groundwater resources can be effectively managed. However, regional strati-graphic uncertainties drive the decision of the optimal drilling location search. Unfortunately, due to the unavailability of a robust solution, most contemporary solutions rely on physical testing methods that are resource intensive. In this regard, a pilot study is conducted to determine the optimal borehole drilling location using a predictive optimization technique that takes strati-graphic uncertainties into account. The study is conducted in a localized region of the Republic of Korea using a real borehole data set. In this study we proposed an enhanced Firefly optimization algorithm based on an inertia weight approach to find an optimal location. The results of the classification and prediction model serve as an input to the optimization model to implement a well-crafted objective function. For predictive modeling a deep learning based chained multioutput prediction model is developed to predict groundwater-level and drilling depth. For classification of soil color and land-layer a weighted voting ensemble classification model based on Support Vector Machines, Gaussian Naïve Bayes, Random Forest, and Gradient Boosted Machine is developed. For weighted voting, an optimal set of weights is determined using a novel hybrid optimization algorithm. Experimental results validate the effectiveness of the proposed strategy. The proposed classification model achieved an accuracy of 93.45% and 95.34% for soil-color and land-layer, respectively. While the mean absolute error achieved by proposed prediction model for groundwater level and drilling depth is 2.89% and 3.11%, respectively. It is found that the proposed predictive optimization framework can adaptively determine the optimal borehole drilling locations for high strati-graphic uncertainty regions. The findings of the proposed study provide an opportunity to the drilling industry and groundwater boards to achieve sustainable resource management and optimal drilling performance." @default.
- W4327564851 created "2023-03-17" @default.
- W4327564851 creator A5004507358 @default.
- W4327564851 creator A5019722954 @default.
- W4327564851 creator A5024164847 @default.
- W4327564851 creator A5027095726 @default.
- W4327564851 creator A5040571073 @default.
- W4327564851 creator A5061409578 @default.
- W4327564851 creator A5078091681 @default.
- W4327564851 date "2023-03-16" @default.
- W4327564851 modified "2023-09-25" @default.
- W4327564851 title "A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management" @default.
- W4327564851 cites W1192997862 @default.
- W4327564851 cites W1681303028 @default.
- W4327564851 cites W1855769638 @default.
- W4327564851 cites W1988629348 @default.
- W4327564851 cites W1990694652 @default.
- W4327564851 cites W2012833410 @default.
- W4327564851 cites W2029401923 @default.
- W4327564851 cites W2032182587 @default.
- W4327564851 cites W2060975296 @default.
- W4327564851 cites W2163012951 @default.
- W4327564851 cites W2278830514 @default.
- W4327564851 cites W2308104338 @default.
- W4327564851 cites W2333269657 @default.
- W4327564851 cites W2512384280 @default.
- W4327564851 cites W2892289985 @default.
- W4327564851 cites W2964875710 @default.
- W4327564851 cites W2972899043 @default.
- W4327564851 cites W2997037219 @default.
- W4327564851 cites W3004928015 @default.
- W4327564851 cites W3021059101 @default.
- W4327564851 cites W3103312084 @default.
- W4327564851 cites W3110015110 @default.
- W4327564851 cites W3118217278 @default.
- W4327564851 cites W3125935460 @default.
- W4327564851 cites W3143270995 @default.
- W4327564851 cites W3177848562 @default.
- W4327564851 cites W3188744712 @default.
- W4327564851 cites W3192600386 @default.
- W4327564851 cites W4205369015 @default.
- W4327564851 cites W4232774292 @default.
- W4327564851 cites W4281250154 @default.
- W4327564851 doi "https://doi.org/10.1021/acsomega.2c06854" @default.
- W4327564851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37008158" @default.
- W4327564851 hasPublicationYear "2023" @default.
- W4327564851 type Work @default.
- W4327564851 citedByCount "0" @default.
- W4327564851 crossrefType "journal-article" @default.
- W4327564851 hasAuthorship W4327564851A5004507358 @default.
- W4327564851 hasAuthorship W4327564851A5019722954 @default.
- W4327564851 hasAuthorship W4327564851A5024164847 @default.
- W4327564851 hasAuthorship W4327564851A5027095726 @default.
- W4327564851 hasAuthorship W4327564851A5040571073 @default.
- W4327564851 hasAuthorship W4327564851A5061409578 @default.
- W4327564851 hasAuthorship W4327564851A5078091681 @default.
- W4327564851 hasBestOaLocation W43275648511 @default.
- W4327564851 hasConcept C119857082 @default.
- W4327564851 hasConcept C124101348 @default.
- W4327564851 hasConcept C126255220 @default.
- W4327564851 hasConcept C127413603 @default.
- W4327564851 hasConcept C150560799 @default.
- W4327564851 hasConcept C154945302 @default.
- W4327564851 hasConcept C187320778 @default.
- W4327564851 hasConcept C33923547 @default.
- W4327564851 hasConcept C41008148 @default.
- W4327564851 hasConceptScore W4327564851C119857082 @default.
- W4327564851 hasConceptScore W4327564851C124101348 @default.
- W4327564851 hasConceptScore W4327564851C126255220 @default.
- W4327564851 hasConceptScore W4327564851C127413603 @default.
- W4327564851 hasConceptScore W4327564851C150560799 @default.
- W4327564851 hasConceptScore W4327564851C154945302 @default.
- W4327564851 hasConceptScore W4327564851C187320778 @default.
- W4327564851 hasConceptScore W4327564851C33923547 @default.
- W4327564851 hasConceptScore W4327564851C41008148 @default.
- W4327564851 hasFunder F4320322120 @default.
- W4327564851 hasFunder F4320335489 @default.
- W4327564851 hasIssue "12" @default.
- W4327564851 hasLocation W43275648511 @default.
- W4327564851 hasLocation W43275648512 @default.
- W4327564851 hasLocation W43275648513 @default.
- W4327564851 hasOpenAccess W4327564851 @default.
- W4327564851 hasPrimaryLocation W43275648511 @default.
- W4327564851 hasRelatedWork W2961085424 @default.
- W4327564851 hasRelatedWork W3046775127 @default.
- W4327564851 hasRelatedWork W3170094116 @default.
- W4327564851 hasRelatedWork W4205958290 @default.
- W4327564851 hasRelatedWork W4285260836 @default.
- W4327564851 hasRelatedWork W4286629047 @default.
- W4327564851 hasRelatedWork W4306321456 @default.
- W4327564851 hasRelatedWork W4306674287 @default.
- W4327564851 hasRelatedWork W4386462264 @default.
- W4327564851 hasRelatedWork W4224009465 @default.
- W4327564851 hasVolume "8" @default.
- W4327564851 isParatext "false" @default.
- W4327564851 isRetracted "false" @default.
- W4327564851 workType "article" @default.