Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327571622> ?p ?o ?g. }
- W4327571622 endingPage "112721" @default.
- W4327571622 startingPage "112721" @default.
- W4327571622 abstract "In practice, on a large number of machines in industrial plants, predictive maintenance relies on periodic measurements to diagnose the condition of the equipment, rather than continuous monitoring of vibrations. In those cases, choosing an appropriate period between measurements is the key to success. Setting a long period implies taking a serious risk of breakdown, while a very short time interval between measurements can unnecessarily increase the costs of the maintenance plan. This work shows a methodology to determine and manage this Time Interval Between Measurements (TIBeM) dynamically adapted to each machine and situation. Depending on the criticality of each machine and its reliability, more specifically, its present diagnosed functional condition and the history of failures and measurements, the most appropriate TIBeM is recalculated each time a new measurement and diagnostic is performed. The described method has been implemented and validated in a large process plant and has led to a considerable improvement in costs and the management of its predictive maintenance plan." @default.
- W4327571622 created "2023-03-17" @default.
- W4327571622 creator A5042095917 @default.
- W4327571622 creator A5055595042 @default.
- W4327571622 creator A5063745073 @default.
- W4327571622 creator A5085122785 @default.
- W4327571622 date "2023-05-01" @default.
- W4327571622 modified "2023-10-01" @default.
- W4327571622 title "Dynamic management of periodicity between measurements in predictive maintenance" @default.
- W4327571622 cites W1499528060 @default.
- W4327571622 cites W1963593341 @default.
- W4327571622 cites W2017300542 @default.
- W4327571622 cites W2027342001 @default.
- W4327571622 cites W2037325790 @default.
- W4327571622 cites W2063739182 @default.
- W4327571622 cites W2067881386 @default.
- W4327571622 cites W2085885476 @default.
- W4327571622 cites W2111988600 @default.
- W4327571622 cites W2141731421 @default.
- W4327571622 cites W2341703791 @default.
- W4327571622 cites W2530044573 @default.
- W4327571622 cites W2559962999 @default.
- W4327571622 cites W2603745210 @default.
- W4327571622 cites W2610214005 @default.
- W4327571622 cites W2613840542 @default.
- W4327571622 cites W2754789423 @default.
- W4327571622 cites W2760655021 @default.
- W4327571622 cites W2886737844 @default.
- W4327571622 cites W2902633916 @default.
- W4327571622 cites W2911890521 @default.
- W4327571622 cites W2915037179 @default.
- W4327571622 cites W2949968685 @default.
- W4327571622 cites W2965129587 @default.
- W4327571622 cites W3003739012 @default.
- W4327571622 cites W3032478753 @default.
- W4327571622 cites W3110834032 @default.
- W4327571622 cites W3166893759 @default.
- W4327571622 cites W3217084187 @default.
- W4327571622 cites W4220678523 @default.
- W4327571622 cites W4286422533 @default.
- W4327571622 cites W4291366471 @default.
- W4327571622 cites W4313437021 @default.
- W4327571622 cites W820935328 @default.
- W4327571622 doi "https://doi.org/10.1016/j.measurement.2023.112721" @default.
- W4327571622 hasPublicationYear "2023" @default.
- W4327571622 type Work @default.
- W4327571622 citedByCount "1" @default.
- W4327571622 countsByYear W43275716222023 @default.
- W4327571622 crossrefType "journal-article" @default.
- W4327571622 hasAuthorship W4327571622A5042095917 @default.
- W4327571622 hasAuthorship W4327571622A5055595042 @default.
- W4327571622 hasAuthorship W4327571622A5063745073 @default.
- W4327571622 hasAuthorship W4327571622A5085122785 @default.
- W4327571622 hasBestOaLocation W43275716221 @default.
- W4327571622 hasConcept C111919701 @default.
- W4327571622 hasConcept C112930515 @default.
- W4327571622 hasConcept C114614502 @default.
- W4327571622 hasConcept C119599485 @default.
- W4327571622 hasConcept C121332964 @default.
- W4327571622 hasConcept C125611927 @default.
- W4327571622 hasConcept C127413603 @default.
- W4327571622 hasConcept C163258240 @default.
- W4327571622 hasConcept C166957645 @default.
- W4327571622 hasConcept C185544564 @default.
- W4327571622 hasConcept C18762648 @default.
- W4327571622 hasConcept C200601418 @default.
- W4327571622 hasConcept C2775846686 @default.
- W4327571622 hasConcept C2776505523 @default.
- W4327571622 hasConcept C2776907094 @default.
- W4327571622 hasConcept C2778067643 @default.
- W4327571622 hasConcept C33923547 @default.
- W4327571622 hasConcept C41008148 @default.
- W4327571622 hasConcept C42475967 @default.
- W4327571622 hasConcept C43214815 @default.
- W4327571622 hasConcept C62520636 @default.
- W4327571622 hasConcept C70452415 @default.
- W4327571622 hasConcept C71924100 @default.
- W4327571622 hasConcept C78519656 @default.
- W4327571622 hasConcept C95457728 @default.
- W4327571622 hasConcept C98045186 @default.
- W4327571622 hasConceptScore W4327571622C111919701 @default.
- W4327571622 hasConceptScore W4327571622C112930515 @default.
- W4327571622 hasConceptScore W4327571622C114614502 @default.
- W4327571622 hasConceptScore W4327571622C119599485 @default.
- W4327571622 hasConceptScore W4327571622C121332964 @default.
- W4327571622 hasConceptScore W4327571622C125611927 @default.
- W4327571622 hasConceptScore W4327571622C127413603 @default.
- W4327571622 hasConceptScore W4327571622C163258240 @default.
- W4327571622 hasConceptScore W4327571622C166957645 @default.
- W4327571622 hasConceptScore W4327571622C185544564 @default.
- W4327571622 hasConceptScore W4327571622C18762648 @default.
- W4327571622 hasConceptScore W4327571622C200601418 @default.
- W4327571622 hasConceptScore W4327571622C2775846686 @default.
- W4327571622 hasConceptScore W4327571622C2776505523 @default.
- W4327571622 hasConceptScore W4327571622C2776907094 @default.
- W4327571622 hasConceptScore W4327571622C2778067643 @default.
- W4327571622 hasConceptScore W4327571622C33923547 @default.
- W4327571622 hasConceptScore W4327571622C41008148 @default.