Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327576919> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4327576919 abstract "Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers. The goal of these algorithms is to perform large quantum computations by breaking the problem down into a large number of shallow quantum circuits, complemented by classical optimization and feedback between each circuit execution. One path for improving the performance of these algorithms is to enhance the classical optimization technique. Given the relative ease and abundance of classical computing resources, there is ample opportunity to do so. In this work, we introduce the idea of learning surrogate models for variational circuits using few experimental measurements, and then performing parameter optimization using these models as opposed to the original data. We demonstrate this idea using a surrogate model based on kernel approximations, through which we reconstruct local patches of variational cost functions using batches of noisy quantum circuit results. Through application to the quantum approximate optimization algorithm and preparation of ground states for molecules, we demonstrate the superiority of surrogate-based optimization over commonly-used optimization techniques for variational algorithms." @default.
- W4327576919 created "2023-03-17" @default.
- W4327576919 creator A5030348383 @default.
- W4327576919 creator A5035244257 @default.
- W4327576919 creator A5070527083 @default.
- W4327576919 date "2023-03-16" @default.
- W4327576919 modified "2023-10-03" @default.
- W4327576919 title "Surrogate-based optimization for variational quantum algorithms" @default.
- W4327576919 cites W1486164486 @default.
- W4327576919 cites W1984753492 @default.
- W4327576919 cites W2161685427 @default.
- W4327576919 cites W2257937122 @default.
- W4327576919 cites W2478899349 @default.
- W4327576919 cites W2562526363 @default.
- W4327576919 cites W2781738013 @default.
- W4327576919 cites W2923370183 @default.
- W4327576919 cites W3084134481 @default.
- W4327576919 cites W3098581063 @default.
- W4327576919 cites W3104428150 @default.
- W4327576919 cites W3104824731 @default.
- W4327576919 cites W3105273233 @default.
- W4327576919 cites W3120852106 @default.
- W4327576919 cites W3136233239 @default.
- W4327576919 cites W3185437825 @default.
- W4327576919 cites W3189250281 @default.
- W4327576919 cites W3214850722 @default.
- W4327576919 cites W3217665308 @default.
- W4327576919 doi "https://doi.org/10.1103/physreva.107.032415" @default.
- W4327576919 hasPublicationYear "2023" @default.
- W4327576919 type Work @default.
- W4327576919 citedByCount "1" @default.
- W4327576919 crossrefType "journal-article" @default.
- W4327576919 hasAuthorship W4327576919A5030348383 @default.
- W4327576919 hasAuthorship W4327576919A5035244257 @default.
- W4327576919 hasAuthorship W4327576919A5070527083 @default.
- W4327576919 hasBestOaLocation W43275769192 @default.
- W4327576919 hasConcept C11413529 @default.
- W4327576919 hasConcept C114614502 @default.
- W4327576919 hasConcept C121332964 @default.
- W4327576919 hasConcept C124148022 @default.
- W4327576919 hasConcept C126255220 @default.
- W4327576919 hasConcept C131675550 @default.
- W4327576919 hasConcept C137019171 @default.
- W4327576919 hasConcept C137836250 @default.
- W4327576919 hasConcept C186468114 @default.
- W4327576919 hasConcept C2779094486 @default.
- W4327576919 hasConcept C33923547 @default.
- W4327576919 hasConcept C41008148 @default.
- W4327576919 hasConcept C58053490 @default.
- W4327576919 hasConcept C62520636 @default.
- W4327576919 hasConcept C62641251 @default.
- W4327576919 hasConcept C74193536 @default.
- W4327576919 hasConcept C84114770 @default.
- W4327576919 hasConceptScore W4327576919C11413529 @default.
- W4327576919 hasConceptScore W4327576919C114614502 @default.
- W4327576919 hasConceptScore W4327576919C121332964 @default.
- W4327576919 hasConceptScore W4327576919C124148022 @default.
- W4327576919 hasConceptScore W4327576919C126255220 @default.
- W4327576919 hasConceptScore W4327576919C131675550 @default.
- W4327576919 hasConceptScore W4327576919C137019171 @default.
- W4327576919 hasConceptScore W4327576919C137836250 @default.
- W4327576919 hasConceptScore W4327576919C186468114 @default.
- W4327576919 hasConceptScore W4327576919C2779094486 @default.
- W4327576919 hasConceptScore W4327576919C33923547 @default.
- W4327576919 hasConceptScore W4327576919C41008148 @default.
- W4327576919 hasConceptScore W4327576919C58053490 @default.
- W4327576919 hasConceptScore W4327576919C62520636 @default.
- W4327576919 hasConceptScore W4327576919C62641251 @default.
- W4327576919 hasConceptScore W4327576919C74193536 @default.
- W4327576919 hasConceptScore W4327576919C84114770 @default.
- W4327576919 hasFunder F4320306076 @default.
- W4327576919 hasFunder F4320306084 @default.
- W4327576919 hasIssue "3" @default.
- W4327576919 hasLocation W43275769191 @default.
- W4327576919 hasLocation W43275769192 @default.
- W4327576919 hasOpenAccess W4327576919 @default.
- W4327576919 hasPrimaryLocation W43275769191 @default.
- W4327576919 hasRelatedWork W1028212721 @default.
- W4327576919 hasRelatedWork W3093944484 @default.
- W4327576919 hasRelatedWork W4224108916 @default.
- W4327576919 hasRelatedWork W4226152172 @default.
- W4327576919 hasRelatedWork W4281262087 @default.
- W4327576919 hasRelatedWork W4288915018 @default.
- W4327576919 hasRelatedWork W4298182858 @default.
- W4327576919 hasRelatedWork W4309236452 @default.
- W4327576919 hasRelatedWork W4327576919 @default.
- W4327576919 hasRelatedWork W4362682022 @default.
- W4327576919 hasVolume "107" @default.
- W4327576919 isParatext "false" @default.
- W4327576919 isRetracted "false" @default.
- W4327576919 workType "article" @default.